Методы защиты продуктов от порчи. Способы консервирования и хранения продуктов

Изобретение относится к области защиты пищевых продуктов от порчи и может быть использовано для повышения сроков хранения колбасных изделий, сыров, свежего и переработанного мяса, рыбной продукции, фруктов, овощей и т.п. Средство для защиты пищевых продуктов от порчи представляет собой экстракт бересты в составе жидкой компоненты, в которой экстракт бересты растворяется или образует дисперсную систему, при этом содержание экстракта бересты и жидкой компоненты составляет, мас.%: экстракт бересты - 0,01-40, жидкая компонента - 99,99-60. В другом варианте средство для защиты пищевых продуктов от порчи представляет собой упаковочный материал, содержащий основообразующую компоненту и модификатор, в качестве которого использован экстракт бересты в количестве не менее 0,01% от массы основообразующей компоненты. Защита пищевых продуктов от порчи достигается либо путем нанесения указанного средства, обладающего высокой активностью в подавлении роста различных патогенных микроорганизмов, на поверхность пищевых продуктов либо путем упаковки продукта в упаковочный материал, имеющий такие же свойства. Изобретение позволяет снизить потери пищевых продуктов при хранении и транспортировке. 3 н. и 4 з.п. ф-лы.

Изобретение относится к области защиты пищевых продуктов от порчи с применением органических соединений в качестве консервантов и может быть использовано для повышения сроков хранения колбасных изделий, сыров, свежего и переработанного мяса, рыбной продукции, фруктов, овощей и т.п. путем нанесения консерванта на поверхность пищевых продуктов или путем использования упаковочных материалов со свойствами, подавляющими развитие патогенных микроорганизмов.

В настоящее время значительно возросли потери пищевых продуктов из-за их порчи в процессе хранения и транспортировки. Это связано как с ухудшением экологической обстановки, влияющей на условия хранения продукции и на качество сырья (загрязнение различными патогенными микрофлорой, в том числе споровыми формами), так и с использованием упаковочных материалов, поверхность которых в процессе изготовления и при применении их по назначению загрязняется. При контакте упаковочных материалов с продуктами патогенные бактерии, грибы и плесени приводят к разложению содержащихся в пищевых продуктах питания углеводов и белков с образованием веществ, не только меняющих органолептические свойства продукта, но и обладающих токсическими свойствами, которые нередко вызывают тяжелые поражения организма человека.

Защиту пищевых продуктов от порчи осуществляют с помощью специальных средств, ингибирующих рост патогенной микрофлоры. Эти средства либо вводят в пищевой продукт, либо обрабатывают поверхность продуктов, либо используют для модификации упаковочных материалов путем обработки внешней поверхности материалов или введением их в состав основообразующей компоненты.

Настоящее изобретение относится к защите пищевых продуктов от порчи путем обработки поверхности пищевых продуктов и использования модифицированной упаковки с применением нового средства для защиты продуктов от порчи.

Хорошую антибактериальную защиту продуктов питания обеспечивают антибиотики при применении их для внешней обработки упаковочных материалов и/или в процессе изготовления упаковочных материалов. Однако большинство антибиотиков являются токсичными (например, пимарицин, натамицин) и имеют противопоказания для большого числа потребителей, а эффективность конкретного антибиотика распространяется лишь на отдельные виды патогенных микроорганизмов. Так, например, натамицин ингибирует рост грибков, плесени и дрожжей (RU 2255615 С2, 2005.07.10.), низин активнее ведет себя против спорообразующих организмов.

Для снижения ограничений, связанных с токсичностью антибиотиков, разработаны средства с использованием менее токсичных антибиотиков и/или с меньшим содержанием антибиотиков путем введения в них нетоксичных добавок с антибактериальными, консервирующими, антиоксидантными и другими свойствам. Большинство применяемых добавок известны как пищевые добавки и поверхностно-активные вещества (в частности, хелатные соединения - ЕР 0384319 А1, 1990.02.).

Известно антибактериальное средство, бактерицидные свойства которого определяются только хмелевыми кислотами или хмелевыми смолами и/или их производными и хелатными соединениями в количестве 0,01-5% от массы композиции (US 6475537, 2002.11.05).

Недостаток средства связан с наличием в экстракте хмеля и его составляющих горечей и эфирных компонент, влияющих на органолептические свойства композиции при ее использовании.

Известны предназначенные для обработки поверхности упаковочных материалов антибактериальные средства, основными компонентами которых являются синтетические органические вещества, например продукт полимеризации аминных и борных кислот (JP 2005143402, 2005.06.09), дегидрацитовая кислота и ее натриевая соль и др. Дегидрацитовую кислоту и ее натриевую соль вводят также в состав упаковочных материалов, в том числе в производстве колбасных оболочек (RU 2151513 С1, 2000.06.27., RU 2151514 С1, 2000.06.27.), покрытий сыров (RU 2170025 С1, 2001.07.10.). Для снижения токсичности химических соединений, к которым относятся дегидрацетовая кислота и ее натриевая соль их комбинируют с консервантами, в качестве которых используют поваренную соль, и/или пищевые кислоты, и/или соли пищевой кислоты.

Недостатком известных средств является то, что как любое синтетическое химическое соединение они токсичны. Это требует использования этих веществ в небольших дозах, которые не позволяют получить желаемый эффект защиты пищевых продуктов. Кроме того, известные химические средства, как правило, являются либо бактерицидными, либо фунгицидными. Дегидрацетовая кислота и ее натриевая соль обладают и бактерицидными и фунгицидными свойствами, однако средство на их основе не снимает проблему снижения доступа воздуха и влаги на поверхность пищевых продуктов через обработанный этим средством упаковочный материал, что необходимо для обеспечения длительного срока хранения продуктов.

Известно средство для удаления химических и микробиологических загрязнений с поверхности пищевых продуктов животного и растительного происхождения путем обработки их поверхности. В состав средства входят пищевые добавки (сульфат натрия, карбоксилметилцеллюлоза, пропиленгликоль), поверхностно-активное вещество, секвестрант, обезвоживающее вещество и др. (RU 2141207 С1, 1999.11.20). Средство используют в виде водного раствора с концентрацией 0,05-0,3%.

Недостаток средства - наличие большого числа компонентов, необходимых для обработки пищевых продуктов, а также низкая эффективность при длительном сроке хранения продуктов.

Для обработки поверхности продуктов полеводства и садоводства известно применение штаммов (RU 2126210 С1, 1999.02.20.), иммуностимуляторов и антисептиков, полученных из биомассы микроцетов (например, RU 2249342 С2, 2005.04.10; RU 2222139 С1, 2004.01.27).

Недостатком этих средств является направленность их на ингибирование отдельных видов микроорганизмов, отсутствие защиты от влаги и кислорода внешней среды, а также высокая стоимость, малый объем их производства и, как следствие, недоступность большинству производителей сельскохозяйственной продукции.

В качестве прототипа выбрано средство, применимое для защиты пищевых продуктов путем обработки пищевого продукта и обработки поверхности упаковочного материала. Средство содержит низкотоксичные высокомолекулярные антибиотики, в том числе бактериоцины, ингибирующие рост многих видов грамположительных микроорганизмов (лантибиотики, педиоцин и др.), литические ферменты (лизоцим) в количестве 38.5-99.8% от общей массы композиции и компонента, выбранная из группы хмелевых кислот и ее производных, в количестве 61.5-0.2% (US 6451365, 2002.09.17).

Основной недостаток средства связан с использованием в ней антибиотиков - бактериционов, применение которых нежелательно для большой части населения, и активностью при подавлении лишь отдельных видов микроорганизмов. Кроме того, горечи хмелевых кислот и их производных изменяют органолептические свойства пищевых продуктов, а из-за высокой стоимости производства бактериционов и энзимов достаточно высока и стоимость композиции в целом. Кроме того, при обработке поверхности упаковочного материала указанным антимикробным средством не происходит модификации материала с приданием ему свойств пониженной водо- и газопроницаемости. Высокая газоводонепроницаемость упаковочных материалов необходима для снижения потерь продукции из-за высыхания и негативного влияния влажности окружающей среды на состояние пищевых продуктов, а также для торможения в них окислительных процессов. Образующиеся в процессе окисления вторичные продукты окисления, в частности продукты окисления жиров, интенсифицируют биопаталогию продукта в процессе его хранения, что негативно сказывается на качестве продукции и сроках его хранения.

Технической задачей, решаемой настоящим изобретением, является разработка допускающего контакт с пищевыми продуктами нетоксичного средства для их защиты на основе природного вещества, обладающего высокой активностью в подавлении роста различных патогенных микроорганизмов (бактерий, плесеней и грибков) в широком интервале температур, антиоксидантными свойствами и способностью защитить продукты от влаги и кислорода, содержащихся во внешней среде. Другой задачей, решаемой настоящим изобретением, является разработка эффективного средства на основе природного вещества, обладающего способностью модифицировать свойства упаковочных материалов путем иммобилизации его в состав упаковочного материала.

В соответствии с изобретением средство для защиты пищевых продуктов от порчи, содержащее вещество со свойствами, направленными на подавление патогенных микроорганизмов, характеризуется тем, что в качестве вышеупомянутого средства использован экстракт бересты в составе жидкой компоненты, в которой экстракт бересты растворяется или образует дисперсную систему, при этом содержание экстракта бересты и жидкой компоненты составляет, мас.%: экстракт бересты - 0,01-40, жидкая компонента - 99,99-60.

В качестве жидкой компоненты может быть использован пищевой жир и/или спирт.

Может быть также использован в качестве жидкой компоненты воск и/или парафин.

Известны средства защиты продуктов от порчи, представляющие собой упаковочные материалы, модифицированные специальными веществами с целью придания им повышенной эластичности, антибактериальных, фунгицидных и других свойств. Для придания упаковочным материалам желаемых свойств их модифицируют средствами, совместимыми с основообразующей компонентой материала. На стадии изготовления упаковочных материалов или перед их применением по назначению в них вводят специальные добавки, диффундирующие при эксплуатации упаковочных материалов на поверхность между продуктом и упаковкой, обеспечивая активное подавление микроорганизмов.

Известны упаковочные материалы из полиолефина, модифицированного цеолитом с серебром или его соединениями (JP 2003321070, 2003.11.11; JP 19950091889, 1995.10.31), дегидрацетовой кислотой (RU 2011662 С1, 1994.04.30), гидроксидом кальция (JP 2003341713; 2003.12.03), лемонграссовым маслом (JP 11293118, 1999.10.26). Известно использование упаковочных материалов из полиамида, модифицированного ионами меди, цинка (WO 2004095935, 2004.11.11), ионами серебра (JP 2002128919, 2002.05.09). Известно использование картонных упаковочных материалов, модифицированных хитозаном с шеллоком (JP 2003328292, 2003.11.19). Известно использование целлюлозных упаковочных материалов, модифицированных винилпирролидоном (JP 2004154137, 2004.06.03), а также экстрактом хмеля, хмелевыми кислотами и их производными (US2005031743, 2004.08.26).

Недостатком известных средств защиты пищевых продуктов, представляющих собой упаковочный материал, является низкая эффективность, обусловленная тем, что упаковочные материалы модифицируются средствами, не позволяющими обеспечить комплексную защиту продуктов: помимо ингибирования роста патогенной микрофлоры упаковочный материал должен предотвращать окисление продуктов, надежно изолировать их от воздействия влаги и кислорода, находящихся в окружающей среде. Кроме того, большинство известных упаковочных материалов модифицировано синтетическими веществами, применение которых в пищевых продуктах может негативно влиять на организм человека или, вследствие уменьшения доз этих веществ для ослабления негативного влияния на человека, обладает недостаточной эффективностью. К тому же для модификации упаковочных материалов используют, как правило, несколько компонент, что усложняет технологию их изготовления.

В качестве прототипа заявляемого средства выбран упаковочный материал, модифицированный одним веществом - гуанидинсодержащим полимером (WO 03084820, 2003.10.16.).

Недостатком этого средства, помимо перечисленных выше и присущих всем известным средствам, является использование для модификации упаковочного материала неприродного вещества, достаточно трудоемкого в его получении и обработке им упаковочного материала. Кроме того, гуанидинсодержащие полимеры не совместимы со многими упаковочными материалами, что сужает область их применения.

Технической задачей, решаемой настоящим изобретением, является разработка средства защиты пищевых продуктов от порчи в виде упаковочного материала различного типа, модифицированного природным веществом, разрешенным к применению в качестве пищевой добавки.

Технической задачей, решаемой настоящим изобретением, является также разработка средства защиты пищевых продуктов от порчи путем применения вещества, позволяющего ингибировать рост патогенной микрофлоры, обладающего антиоксидантными свойствами и высокой газоводонепроницаемостью, что замедляет потерю влаги из продукта и препятствует доступу воздуха и влаги в пищевой продукт из внешней среды. Использование таких упаковочных материалов позволяет повысить защиту пищевых продуктов от порчи и, следовательно, повысить сроки хранения продукции.

В соответствии с изобретением разработанное средство защиты пищевых продуктов от порчи, как и известное, представляющее собой упаковочный материал, содержащий основообразующую компоненту и модификатор, обладающий способностью подавлять патогенные микроорганизмы, характеризуется тем, что в качестве модификатора использован экстракт бересты в количестве не менее 0,01% от массы основообразующей компоненты.

Целесообразно использовать экстракт бересты в виде бетулина.

Анализ приведенных в настоящем описании технических решений показывает, что известные способы защиты пищевых продуктов от порчи путем упаковки продуктов в упаковочные материалы, модифицированные веществами со свойствами, направленными на подавление патогенных микроорганизмов, обладают недостатками. Эти недостатки обусловлены свойствами веществ, применяемых для модификации упаковочных материалов. Используемые упаковочные материалы не позволяют обеспечить комплексную защиту продуктов.

Технической задачей, решаемой настоящим изобретением, является разработка более эффективного способа защиты пищевых продуктов от порчи путем упаковки продуктов в упаковочный материал на основе вещества, разрешенного к применению в качестве пищевой добавки и обладающего свойствами, способствующими увеличению срока хранения различных пищевых продуктов.

В соответствии с изобретением предлагается способ защиты пищевых продуктов от порчи путем упаковки продуктов в упаковочный материал, содержащий основообразующую компоненту и модификатор, обладающий способностью подавлять патогенные микроорганизмы, в качестве которого использован экстракт бересты в количестве не менее 0,01% от массы основообразующей компоненты. Целесообразно использовать экстракт бересты в виде бетулина.

В основе изобретения лежит широко известный факт, что в состав бересты входят терпеноиды, обладающие антимикробными свойствами, подавляющими рост различных микроорганизмов (бактерий, плесени, грибов). Экстракт бересты содержит совокупность терпеноидов, однако более 70% общей массы выделенных из бересты веществ приходится на бетулин. Бетулин относится к числу веществ, обладающих наиболее высокой биологической активностью. Антиоксидантные, иммунностимулирующие, гепатопро-текторные и антимикробные свойства бетулина определяют рекомендаций к его применению в качестве биологически активной пищевой добавки и основной компоненты лекарственных препаратов для лечения тяжелых заболеваний. Остальные компоненты экстракта бересты (лупеол, -ситостерин, флавоноиды, бетулинвая кислота, бетулиновый альдегид и др.) также обладают лечебными свойствами и используются в составе лекарственных препаратов.

В соответствии с настоящим изобретением предлагается использовать природное, обладающее антимикробными свойствами вещество - экстракт бересты - для защиты различных пищевых продуктов от порчи, а дополнительное повышение эффективности такого средства защиты продуктов от порчи обеспечивается антиоксидантными и гидрофобными свойствами экстракта. Такая совокупность свойств, полезных для защиты пищевых продуктов, выделяет заявляемое средство среди известных, аналогичных по назначению. Кроме того, достоинством экстракта бересты является возможность использования его для различных способов защиты продуктов, включая нанесение его в виде раствора или дисперсной системы (эмульсии или суспензии) на поверхность пищевого продукта и модифицирование упаковочных материалов на основе коллагена, целлюлозы, полимеров.

Одним из важнейших применений экстракта бересты является использование его для повышения сроков хранения плодовоовощной продукции. Антимикробные свойства экстракта бересты подавляют развитие патогенных микроорганизмов, а его гидрофобные свойства, в основном определяемые наличием в нем бетулина, способствуют снижению скорости испарения влаги, выделяемых фруктами и овощами в процессе дыхания. Это не только предохраняет продукцию от высыхания, но и снижает влагосодержание в занимаемом продукцией объеме, т.е. препятствует развитию на поверхности продукции и на таре, где она содержится, патогенных организмов. Экстракт бересты можно наносить на фрукты и овощи, на внутреннюю поверхность тары, на упаковочную или прокладочную бумагу.

Экстракт бересты обладает свойством, позволяющим иммобилизовать его в высокомолекулярные материалы, к которым относятся коллаген, целлюлоза, полиолефины, поливинилхлорид и другое полимерное сырье, являющееся основообразующей компонентой упаковочного материала. В состав основообразующей компоненты входят также пластификаторы (растительные масла, полиолы, например, глицерин, сорбит, полигликоль, а также смеси полиолов с водой) и модификаторы, вводимые в основообразующую компоненту для придания упаковочным материалам желаемых эксплуатационных характеристик. Вследствие иммобилизации экстракта бересты происходит модификация структуры высокомолекулярного материала и направленное ее изменение. В результате упаковочные материалы приобретают свойства, необходимые для повышения сроков хранения продуктов: антимикробные, гидрофобные и антиоксидантные. Вследствие синерезиса пластификатор с экстрактом бересты выносится из объема материала на его поверхность, а поскольку используемые при изготовлении упаковочных материалов в качестве пластификаторов жиры и полиоли ограниченно совместимы с высокомолекулярными материалами, то синерезис происходит непрерывно в течение длительного времени, обеспечивая защиту продуктов, упакованных в такой материал.

При обработке поверхности пищевого продукта экстрактом бересты и при плотном контакте упаковочного материала с пищевым продуктом экстракт бересты переходит в небольшой поверхностный слой пищевых продуктов, сообщая ему полезные для организма человека свойства, наиважнейшими из которых являются антиоксидантное, гепатопротекторное и иммунностимулирующее. Экстракт бересты представляет собой порошкообразное (бетулин - кристаллическое) вещество без запаха и вкуса, поэтому он не изменяет органолептические свойства продукта.

Минимальное количество экстракта бересты (0,01% от массы основообразующей компоненты упаковочного материала или при плотности 0,1 г/м 2 на поверхности обработанной продукции) определено по проявлению им бактерицидного эффекта.

Для оценки биологической активности заявляемого средства защиты продуктов от порчи были проведены исследования, доказывающие угнетение экстрактом бересты роста микроорганизмов. При проведении исследований эмульсия экстракта бересты в растительном масле вводилась в культурную среду. Оценивалось изменение количества колонеобразующих единиц. Результаты отражены в таблице. Количество колонеобразующих единиц принимается за 100%. Изменение роста отсчитывается от контрольных величин.

Микроорганизмы Содержание экстракта бересты, %
0 0,01 0,1 1 5 10
Proteus vulqaris 100 85 55 30 10 1
Bac.subtilis 100 95 60 35 15 2
Escherichia coli 100 75 50 30 8 0
Staphylococcus aureus 100 85 50 25 7 0
Saccharomyces cerevisiae 100 80 45 20 5 0
Candida albicans 100 83 48 24 6 0

Исследования показывают, что экстракт бересты в качестве средства для подавления патогенных микроорганизмов обеспечивает повышение сроков хранения пищевых продуктов не менее чем в 1,7 раза при использовании упаковочного материала с содержанием в нем экстракта бересты ˜1% от массы основообразующей компоненты. Повышение содержания экстракта бересты в составе упаковочного материала в общем случае повышает сроки хранения пищевых продуктов, однако увеличение содержания экстракта бересты выше 10% не оказывает существенного влияния на рост его эффективности.

Поскольку биологическая активность экстракта бересты проявляется при температурах -20°С - +220°С, его можно использовать для модификации упаковочных материалов в технологических процессах, проходящих при комнатных температурах (обработка поверхности пищевых продуктов и упаковочных материалов) и в процессе производства упаковочных материалов, температурный режим которых не приводит к потери биоактивности экстракта бересты.

Под упаковочным материалом подразумевается материал с полимерной, коллагенсодержащей, целлюлозной (в том числе картонный) основообразующей компонентой. Полимерные материалы применяются в колбасном производстве в качестве колбасной оболочки для упаковки мясных и рыбных продуктов, сыров, молочных продуктов, некоторых сельскохозяйственных продуктов, требующих принятия особых мер для обеспечения их сохранности в течение длительного времени, а также для производства тары. Коллагенсодержащий материал применяется в качестве колбасных оболочек. Целлюлозный материал применяется в качестве колбасных оболочек, для упаковки различных мясных, рыбных и молочных продуктов. К целлюлозным материалам относится картон, применяемый для изготовления специализированной тары, а также бумага в качестве тароупаковочных материалов.

Поскольку терпеноиды - основные компоненты экстракта бересты - нерастворимы в воде, в ряде имеющих практическое значение случаях экстракт бересты используют в комбинации с жидкими компонентами, при внесении в которые экстракт бересты растворяется или образует дисперсную систему (эмульсию или суспензию), при этом проявляется одно из сильных свойств бетулина - свойство эмульгатора. Использование экстракта бересты в составе жидкой компоненты позволяет равномерно нанести экстракт бересты на поверхность пищевого продукта и позволяет обеспечить равномерное распределение экстракта бересты в используемом для модификации материала рабочем составе и, следовательно, в модифицируемом материале.

В качестве жидкой компоненты можно использовать пищевые растительные и/или животные жиры в жидком состоянии, низкомолекулярные и высокомолекулярные спирты - полиолы. При использовании конкретной компоненты существует оптимальное количественное соотношение между ней и экстрактом бересты, в общем же случае допустимо содержание экстракта бересты - 0,01-40% и, соответственно, содержание жидкой компоненты - 99,99-60%. Количество 0,01% экстракта бересты в жидкой компоненте соответствует количеству экстракта, необходимому для получения его насыщенного раствора в жире при 5°С.

При использовании экстракта бересты для повышения сроков хранения плодовоовощной продукции можно использовать дисперсную систему, включающую воск и/или парафин.

В ряде случаев является целесообразным использование рабочих составов в виде водно-жировых и водно-спиртовых дисперсных систем, при этом содержание воды в составе дисперсной системы может варьироваться от 5 до 30% от общей массы. Такое содержание воды позволяет получить среду, обеспечивающую равномерную обработку поверхности пищевых продуктов и эффективно модифицирующую коллагенсодержащие, целлюлозные и полимерные материалы.

Концентрация экстракта в дисперсной системе для покрытия поверхности пищевых продуктов определяется желаемой плотностью покрытия. Для защиты мясных, рыбных и молочных продуктов, ягод целесообразно реализовать плотность покрытия с содержанием экстракта бересты 0,005-2 г/м 2 , а для защиты фруктов и овощей плотность покрытия может составлять 0,005-10 г/м 2 . Нижняя граница определяется наблюдаемым положительным влиянием экстракта на сохранность продукции (черешня - на 5 суток, яблоки - в среднем на 2 месяца при хранении при температуре 16-18°С), а верхняя граница - экономической целесообразностью.

Поверхностная обработка коллагенсодержащих и целлюлозных упаковочных материалов такой средой не изменяет такие важные их характеристики, как механическая прочность, эластичность, термостабильность в требуемом диапазоне температур, а в производстве колбасных изделий не требуется изменения режимов шприцевания, рекомендуемых изготовителем колбасных оболочек, колбасные оболочки сохраняют форму при снижении температуры без образования бульонно-жировых отеков.

Заявляемое средство может быть использовано в любой известной технологии обработки поверхности упаковочного материала: методом погружения, орошения, замачивания.

Для модификации упаковочных материалов путем внедрения экстракта бересты в состав упаковочного материала в процессе его производства экстракт бересты можно использовать как с добавками, так и без добавок, вводя его в состав одной из компонент, предусмотренных технологией изготовления материала и предназначенных для получения требуемых физико-химических характеристик.

При производстве модифицированных упаковочных материалов, так же так и для обработки поверхности упаковочных материалов, можно использовать растворы, эмульсии и суспензии на основе жиров и спиртов, в том числе полиолов. Их вводят в формовочную (экструзионную) массу в составе добавок, например, в составе пластификатора или модификатора или непосредственно перед формированием (экструзией) упаковочного материала в соответствии с нормативной технологией. Удовлетворение требуемым параметрам по физико-механическим свойствам упаковочных материалов (прочности к разрыву, эластичности, эксплуатационной устойчивости и т.д.) обеспечивается при 0,01-7%-ном содержании экстракта бересты по отношению к массе формовочной (экструзионной) массы.

При изготовлении упаковочного материала из картона экстракт бересты можно ввести в формовочную массу перед формованием или обработать поверхность картона дисперсной системой с экстрактом бересты.

При синтезе биоразлагаемых полимерных материалов с применением в качестве модификаторов крахмала экстракт бересты можно ввести в смеси с крахмалом. При этом экстракт бересты, который является природным веществом, не препятствует разложению внедряемых в формовочную массу натуральных полимеров, подверженных воздействию почвенных микроорганизмов и способствующих распаду полимерных упаковочных материалов.

Проведены испытания для определения защиты пищевых продуктов от порчи путем обработки экстрактом бересты поверхности продуктов, которые подтвердили эффективность применения экстракта бересты. Так, раствор, содержащий экстракт бересты в количестве 0,01%, кукурузное масло - 99,99%, примененный для обработки поверхности мясных полуфабрикатов, позволил увеличить их срок хранения при температуре 9°С в 1,5 раза.

Обработка экстрактом бересты плодоовощной продукции снижает скорости испарения влаги, выделяемых фруктами и овощами в процессе дыхания. Это не только предохраняет продукцию от высыхания, но и снижает влагосодержание в занимаемом продукцией объеме, т.е. препятствует развитию на ее поверхности патогенной микрофлоры. Отмечено повышение сроков хранения дорогостоящей штучной продукции (ананасов, дынь, манго), которая была упакована в бумагу, обработанную экстрактом бересты напылением.

Картофель, заложенный на хранение в овощехранилище и обработанный водно-спиртовой дисперсной системой с получением покрытия с плотностью экстракта 0,1-2 г/м 2 , сохранился на 2 месяца дольше, чем в контрольной укладке. Срок хранения абрикосов в открытой таре при укладке абрикосов вроссыпь увеличился на 14 дней при нанесении водно-спиртовой дисперсной системой плотностью 0,3-1,5 г/м 2 . При укладке яблок различных сортов, культивируемых в средней полосе России, в деревянную тару, обработанную дисперсной системой, содержащей экстракт бересты и растительное масло, срок хранения при температуре 18°С увеличился на 2 месяца.

Удобство транспортировки экстракта и простота приготовления рабочего состава с экстрактом бересты делает его применение доступным производителям сельскохозяйственной продукции.

Проведены испытания способа защиты пищевых продуктов от порчи с использованием полимерных, коллагенсодержащих и целлюлозных (в том числе картонных) модифицированных упаковочных материалов. Срок хранения мясной и рыбной продукции и сыров, упакованных в такой упаковочный материал, определялся по наличию на поверхности продукции патогенных микроорганизмов визуально (плесень) и путем проведения микробиологических исследований, срок хранения плодовоовощной продукции - визуально.

Испытания показали увеличение сроков хранения сыров, мясной, рыбной и плодовоовощной продукции, упакованной в полимерные материалы, в среднем на 70% без изменения органолептических свойств.

Проведены испытания колбасных изделий и сыров в модифицированных коллагеновых и целлюлозных оболочках. Вследствие повышения газоводонепроницаемости оболочек потеря массы полукопченых колбас, оболочки которых были обработаны жировой эмульсией с 1%-ным содержанием экстракта бересты, через 2 месяца хранения составила менее 1%. Через 41 день с начала эксперимента поверхность опытных колбасных батонов была чистой, блестящей, без налета грибковой плесени; слой колбасы, примыкающий к обработанной оболочке, не имел постороннего привкуса, запаха и изменения цвета; опытные образцы колбас имели выраженную сочность. Сыры сохранили прекрасный внешний вид в течение времени, превышающего установленные сроки хранения в 1,6 раз (например, сыр «Адыгейский» - через 58 дней после начала эксперимента). Содержание влаги и соли в опытных образцах соответствует ГОСТам на каждый вид продукции. Газо-жидкостная хроматография показала сохранение под оболочкой колбасных изделий ненасыщенных жирных кислот.

Ниже приведены примеры, иллюстрирующие приемы модификации упаковочных материалов заявляемым средством для защиты пищевых продуктов от порчи. Эти материалы предназначены для реализации заявленного способа защиты пищевых продуктов. Примеры иллюстрируют промышленную применимость изобретения.

Приготавливают жировую эмульсию на основе растительного масла, содержащую 10-12% экстракта бересты и 20% воды, для чего растительное масло подогревают до температуры 30-35°С и вводят в него при помешивании экстракт бересты. Предварительно замоченную в воде колбасную оболочку погружают в емкость с приготовленной жировой эмульсией на 1-2 минуты, затем оболочку вынимают из эмульсии и выдерживают ее над емкостью с эмульсией 3-5 минут, после чего оболочку передают на шприцевание.

Сформированный батон колбасы, оболочка которого обработана в соответствии с примером 1, погружают в емкость с эсмульсией на 1-2 минуты, затем вынимают из емкости, выдерживают над ней 3-5 минут, после чего колбасный батон передают на высушивание.

Приготавливают жировую суспензию на основе растительного масла, содержащую 5-10% экстракта бересты, для чего растительное масло подогревают до температуры 25-30°С и вводят в него при помешивании экстракт бересты. Предварительно замоченную в воде колбасную оболочку погружают в емкость с приготовленной жировой суспензией на 1-2 минуты, затем оболочку вынимают из суспензии и выдерживают ее над емкостью с суспензией в течение 3-5 минут, после чего оболочку передают на шприцевание.

Приготавливают жировую суспензию на основе растительного масла, содержащую 5-10% экстракта бересты, для чего растительное масло подогревают до температуры 120°С и вводят в него при помешивании экстракт бересты, после чего охлаждают до 40-45°С. Колбасную оболочку погружают в емкость с приготовленной жировой суспензией на 2-5 минут, затем оболочку вынимают из суспензии и выдерживают ее над емкостью с суспензией в течение 3-5 минут, после чего оболочку передают на шприцевание.

Приготавливают жировую эмульсию на основе растительного масла, содержащую 15% экстракта бересты и 30% воды, для чего растительное масло с водой подогревают до температуры 40-45°С и вводят в него при помешивании экстракт бересты. Сформированные батоны колбасы подвешивают на палки и орошают поверхность колбасы полученной эмульсией в течение 8 минут.

Экстракт бересты в количестве 1% от массы коллагенсодержащего сырья смешивают с глицерином и полиэтиленгликолем (с 7 и 2%-ном содержании относительно массы коллагенсодержащего сырья соответственно), полученную смесь смешивают с коллагенсодержащим сырьем и затем формуют колбасную оболочку.

Экстракт бересты в количестве 1% от массы коллагенсодержащего сырья смешивают с кукурузным маслом, взятом из расчета 8% от массы коллагенсодержащего сырья, полученную смесь смешивают с коллагенсодержащим сырьем и затем формуют колбасную оболочку.

Смешивают 15% экстракта бересты и 85% подсолнечного масла, затем в полученную суспензию вносят примерно такое же количество измельченного полиэтилена низкой плотности и перемешивают, после чего добавляют в соответствие с рецептурой оставшуюся часть полиэтилена, перемешивают при нагревании и подвергают экструзии. Суспензия составляет 4% от массы полиэтилена.

Для изготовления трехслойного пленочного материала используют сополимер этилена с винилацетатом и подсолнечное масло в качестве пластификатора. Приготавливают суспензию с содержанием бетулина - 10% и масла - 90% и используют эту суспензию для формирования внутреннего слоя, как в примере 8, причем суспензия составляет 3% от экструзионной массы внутреннего слоя. Упаковочный материал изготавливают соэкструзией с применением трех экструдеров.

Пример 10.

Приготавливают суспензию, содержащую экстракт бересты - 10% и подсолнечное масло - 90%, в суспензию вводят крахмал в количестве 25% от массы суспензии и далее осуществляют формирование упаковочного материала в соответствии с примером 8. Суспензия составляет 2% от суммарной массы крахмала и полимерного сырья.

Пример 11.

Целлюлозную массу перед отливом картонного полотна орошают суспензией, содержащей экстракт бересты - 15% и глицерин - 85%. Картон используют для хранения овощей и фруктов.

Пример 12.

Целлюлозную массу перед отливом картонного полотна, предназначенного для ламинирования его полимерным материалом, орошают перед отливом картонного полотна эмульсией. Для приготовления эмульсии сначала приготавливают суспензию с 20%-ным содержанием бетулина и 80%-ным содержанием животного жира, затем добавляют при перемешивании воду в количестве 25% от массы суспензии.

Пример 13.

Экстракт бересты смешивают с этиловым спиртом, мас.%: экстракт бересты - 0,3, этиловый спирт - 99,7. В результате получается раствор, который распыляют на поверхность картонной тары.

Приведенные примеры не исчерпывают все возможные комбинации технологических составляющих, используемых при изготовлении упаковочных материалов, и рецепты введения в них заявляемого средства для защиты продуктов на основе экстракта бересты. В каждом из приведенных примерах вместо экстракта бересты, содержащего помимо бетулина другие вещества, можно использовать только бетулин, однако в ряде случаев это является нецелесообразным, поскольку выделение бетулина из экстракта бересты увеличивает затраты на изготовление упаковочных материалов.

К достоинству следует отнести то, что экстракт бересты, введенный в состав нового упаковочного материала и используемый в качестве нового средства при реализации способа защиты пищевых продуктов от порчи, не оказывает негативного воздействия на биосферу.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Средство для защиты пищевых продуктов от порчи, содержащее вещество со свойствами, направленными на подавление патогенных микроорганизмов, отличающееся тем, что в качестве вышеупомянутого вещества использован экстракт бересты в составе жидкой компоненты, в которой экстракт бересты растворяется или образует дисперсную систему, при этом содержание экстракта бересты и жидкой компоненты составляет, мас.%: экстракт бересты - 0,01 - 40, жидкая компонента - 99,99 - 60.

2. Средство по п.1, отличающееся тем, что в качестве жидкой компоненты использован пищевой жир и/или спирт.

3. Средство по п.1, отличающееся тем, что в качестве жидкой компоненты использован воск и/или парафин.

4. Средство по любому из пп.1-3, отличающееся тем, что использован экстракт бересты в виде бетулина.

5. Средство для защиты пищевых продуктов от порчи, представляющее собой упаковочный материал, содержащий основообразующую компоненту и модификатор, обладающий способностью подавлять патогенные микроорганизмы, отличающееся тем, что в качестве модификатора использован экстракт бересты в количестве не менее 0,01% от массы основообразующей компоненты.

6. Средство по п.5, отличающееся тем, что использован экстракт бересты в виде бетулина.

7. Способ защиты пищевых продуктов от порчи, предусматривающий упаковку продукта в упаковочный материал, выполненный в соответствии с любым из пп.5 и 6.

Порчу продуктов растительного и животного происхождения вызывают действие множества ферментов, входящих в состав самих продуктов, и жизнедеятельность микробов внешней среды.

Ферменты, хотя и в очень малых количествах, находятся в каждой живой клетке. Они играют очень важную роль при всех процессах развития, дыхания, роста и т. д. Каждый фермент строго специфичен по характеру своего воздействия на растение. Например, есть такие, которые способствуют созреванию плодов в определенный период развития растения. Плоды могут дозревать и после уборки, так как содержащиеся в них ферменты продолжают действовать. Однако при длительном хранении они вызывают и нежелательные явления - размягчение и так называемые физиологические или функциональные заболевания плодов (вследствие нарушения обмена веществ): загар и стекловидность мякоти у яблок, потемнение сердцевины клубней картофеля, образование черных точек на листьях белокочанной капусты и др.

Главная же причина порчи овощей и плодов при переработке их на заводах - жизнедеятельность таких микроорганизмов, как бактерии, плесневые грибки и дрожжи (дрожжевые грибки). Все они имеют очень малые размеры, исчисляемые микронами или микрометрами (1 мкм равен 0,001 мм).

Бактерии, плесени и дрожжи различают по множеству признаков - размерам, форме, способности к передвижению и жизни при разных условиях температуры и влажности, видам пищевых продуктов, на которых они могут развиваться. Микробы, которым для жизнедеятельности необходим кислород, - аэробы, живущие без кислорода - анаэробы. Однако всем им нужна вода, достаточная влажность той среды, в которой они обитают, а также определенная температура; подавляющее большинство микробов лучше развивается в таких ее пределах, как 20-40°. Но и здесь немало их видов, приспособившихся к более высоким и низким температурам. Например, если продукты, в которых находятся микробы, заморозить и выдержать некоторое время, то последние не погибают, а лишь временно прекращают свою жизнедеятельность. После повышения температуры они вновь возобновляют свою активность. Значительное же повышение температуры для микробов губительно: при 70° и выше; особенно при 100°, погибает большая часть их. Существует много видов бактерий, переносящих длительное кипячение в воде и даже нагревание при значительно более высоких температурах - 110-120 и 130°. В таких неблагоприятных условиях они образуют так называемые споры, которые сохраняются, а при снижении температуры дают новые бактерии. В концентрированных растворах кислот и рассолах микробы не развиваются.

Бактерии размножаются делением клеток, плесени - своих нитей (мицелия) и путем образования спор, дрожжи - почкованием. Все микроорганизмы при благоприятных условиях размножаются очень быстро - через каждые 15-20-25 мин. Из одной клетки образуется две, а через такой же промежуток времени происходит следующее очередное деление. Питаются микроорганизмы теми же питательными веществами (белками, углеводами, жирами), которые необходимы человеку и всем высшим животным. Микробам нужны также витамины, минеральные и другие вещества. В процессе усвоения ими пищи происходит распад некоторых веществ, при этом образуются различные продукты - вода, углекислота и газы, некоторые из них имеют неприятный гнилостный запах, что свойственно испорченным пищевым продуктам. Бактерии, вызывающие различные заболевания, а также и пищевые отравления, значительно труднее обнаружить. Особенно опасны для человека (иногда со смертельным исходом) бактерии «клостридиум ботулинум». Попадая на пищевые продукты (чаще всего из почвы, где обычно обитают), они в анаэробных условиях (без доступа кислорода) вырабатывают сильнодействующий яд (токсин), наличие которого установить весьма трудно даже с применением специальных методов. Эти бактерии развиваются и в обычных условиях, но выделяют токсин только в анаэробной среде. Споры их очень устойчивы к нагреванию и выдерживают длительное кипячение, после чего могут снова развиваться, давая начало новому поколению. Однако выработанный этими бактериями токсин разрушается при кратковременном (10-15 мин) кипячении и не представляет уже опасности для организма.

В природе имеется также множество микробов, которые весьма полезны, а некоторые настолько необходимы, что их жизнедеятельность служит основой производства целых крупных отраслей ряда пищевых (и непищевых) производств. Так, квашение капусты, засолка овощей и мочение фруктов и ягод осуществляются благодаря полезным молочнокислым бактериям. Повышенная концентрация молочной кислоты, которую они выделяют в процессе жизнедеятельности, предохраняет продукт от порчи другими бактериями. Без полезных микроорганизмов невозможно было бы производство спирта и вин, уксуса и многих других продуктов.

Для сохранения овощей и плодов необходимы условия, при которых невозможно развитие микробов, способных вызывать их порчу. Из перечисленных основных видов микроорганизмов вред наносят главным образом плесени и дрожжи, поскольку плодоовощная продукция представляет собой основной источник их питания из-за высокого содержания углеводов. Жизнедеятельность же вредных бактерий в большей мере вызывает порчу мясных, рыбных и других продуктов с высоким содержанием белков. В настоящее время для создания необходимых оптимальных условий для сохранения овощей и плодов практическое значение имеют следующие способы.

Охлаждение и замораживание. При холодильном хранении овощи и плоды используют в большинстве случаев в целом виде без предварительной обработки, поскольку в них должен продолжаться, хотя и сильно замедленный, процесс дыхания. В зависимости от их вида (в ряде случаев и от сорта) хранение при 0° (на 0,5-1° ниже без подмораживания) или на 2-5° выше может продолжаться несколько недель, иногда - месяцев.

Для замораживания - непрерывного хранения без кратковременного оттаивания овощи и плоды предварительно чистят, иногда разрезают или измельчают, бланшируют (ошпаривают кипятком для разрушения ферментов). Охлаждают их быстро при температуре минус 35°, в новых современных скороморозильных аппаратах (криогенных)-минус 78° (в жидкой углекислоте) и даже при минус 196° (в жидком азоте) для лучшего сохранения качества продукта. Это самый эффективный способ переработки (консервирования) овощей, плодов и многих других продуктов питания.

Сушка - высушивание плодов и овощей до определенной концентрации сухих веществ в них при сохранении питательных веществ.

Обычно в высушенных овощах остается 12-14% воды, в плодах - 18-20%, в некоторых до 24-25% и до более низкой влажности - 4-5% и менее. Но такие сухие продукты хранят в герметически укупориваемой таре (металлические или стеклянные банки) во избежание поглощения ими влаги из окружающего воздуха.

Консервирование сахаром предусматривает сохранение плодов и ягод путем уваривания их в высококонцентрированном сахарном сиропе (60-65%-ном и даже выше), в котором не могут развиваться микроорганизмы. Такой способ применяют для приготовления широко известных сахаристых продуктов - варенья, джемов, повидла, желе, сиропов.

Химическое консервирование проводят при помощи специальных консервантов, или антисептиков. Наиболее известны и распространены сернистый ангидрид, или двуокись серы. Применяют и другие химические консерванты, в частности такие кислоты, как бензойная, салициловая, а также сорбиновая, которая в последние годы получила значительное распространение.

Маринование широко и повсеместно используют как в промышленности, так и в домашнем хозяйстве для длительного хранения овощей и фруктов при помощи раствора уксусной кислоты в концентрации 1,2-1,8%, которая тормозит или полностью приостанавливает жизнедеятельность микроорганизмов.

Консервирование поваренной солью при концентрации раствора до 20% полностью предохраняет овощи от порчи, В овощеперерабатывающем производстве такой крепкий посол применяют сравнительно редко, только при заготовке овощных полуфабрикатов.

Квашение, соление - наиболее распространенные способы консервирования огурцов, помидоров, капусты при помощи полезных молочно-кислых микробов. Добавляемая же соль (1,5-2,5%) способствует улучшению качества продукции.

Тепловая стерилизация и пастеризация плодов и овощей практически полностью уничтожают микроорганизмы и их споры.

Стерилизация - наиболее распространенный в современной пищевой промышленности способ для переработки почти всех видов пищевых продуктов как растительного, так и животного происхождения. При температуре ниже 100° их пастеризуют, при 100° или выше - стерилизуют.

Стерилизованные консервированные продукты в металлической (жестяной), стеклянной, полимерной или другой водо- и газонепроницаемой таре, герметически укупоренной, хранятся продолжительное время (много лет) без порчи и без заметного снижения качества.

Предохранение пищевых продуктов от порчи осуществляется в основном двумя способами. Первым способом, на котором основано консервирование пищевых продуктов в герметической таре, является стерилизация. Продукт нагревают для уничтожения микроорганизмов и для предохранения от последующего загрязнения его укладывают в герметическую тару. Второй способ обеспечивает сохранение пищевого продукта путем торможения развития микроорганизмов-возбудителей порчи; эта цель может быть достигнута различной обработкой пищевого продукта, в результате которой активность микроорганизмов задерживается или замедляется. Обработка продукта такими методами не всегда связана с уничтожением микроорганизмов (т. е. она не дает гермицидного или фунгицидного эффекта), при устранении или снижении воздействия, тормозящего развитие микроорганизмов, пищевой продукт подвергается порче.

При рассмотрении зависимости между жизнедеятельностью микроорганизмов и способами консервирования пищевых продуктов необходимо уделить внимание наиболее распространенным из них, не требующим нагревания, так как обработанные такими способами продукты часто используются как сырье в производстве баночных консервов. Кроме того, консервирование некоторых пищевых продуктов (фрукты, джем, соуса и маринады) производится с применением как нагревания, так и тормозящих веществ. К главным методам, используемым в промышленном масштабе, относятся: замораживание, газовое хранение, сушка (обезвоживание), фильтрование, маринование, квашение, копчение, облучение и внесение так называемых естественных консервантов - сахара, соли, кислот и пряностей и химических консервантов - сернистого ангидрида и бензойной кислоты. Некоторые из этих методов применяются в сочетании один с другим, причем их действие является суммарным.

Замораживание

При низких температурах пищевые продукты сохраняются в силу торможения или предотвращения роста микроорганизмов-возбудителей порчи; если эти продукты совершенно свежие, то в них задерживается действие естественных автолитических ферментов.

Микроорганизмы, дающие рост при 0° и ниже, имеют оптимум в пределаех 15-20°; микроорганизмы с оптимумом около 37° дают очень медленный рост (или совсем никакого) при температуре ниже 5°. Психрофильные микроорганизмы способны к сравнительно быстрому росту при 0°; при этом, хотя интенсивность их роста ниже, чем при более высоких температурах, общее количество образовавшихся клеток может быть довольно велико. Микроорганизмами, обычно развивающимися при низких температурах, являются бактерии родов Achromobacter, Flavobacterium, Pseudomonas и Micrococcus; дрожжи типа Torulopsis и плесени родов Penicillium Cladosporium, Mucor и Thamnidium.

Нижний предел, при котором происходит рост микроорганизмов в пищевых продуктах, определяется не только температурой: весьма (Важным фактором является количество воды, вымороженной из среды. В процессе образования льда рост бактерий задерживается, между тем как плесени и дрожжи при этих условиях преобладают, так как они лучше выдерживают высокое осмотическое давление, получающееся в результате концентрирования растворенных веществ вследствие отделения воды в виде льда. По этой же причине рост бактерий на переохлажденной среде происходит при более низких температурах, чем на замороженной среде. Рост бактерий на переохлажденной среде может происходить при -7°, в то время как предельная температура роста на замороженной среде составляет около -3°. Микроорганизмы, способные выдержать высокую концентрацию растворенных веществ, могут быть чрезвычайно устойчивыми к действию низких температур; отмечен также рост галофильных бактерий на беконе и осмофильных дрожжей в концентрированном апельсиновом соке при температурах до -10°.

Предельная температура роста психрофильных микроорганизмов, включая бактерии, дрожжи и плесени, составляет от -5° до -10°, ближе к -7°. Установлено, что хранение при -5° не предотвращает развития дрожжей и плесеней на замороженном мясе, причем колонии появляются через 7 недель. Рост Pseudomonas, Lactobacillus, Monilia и Peicillium происходил при -4°, a Cladosporium и Sporotrichum – при -6,7°. Большинство пищевых продуктов, хранящихся в условиях ниже температурного интервала от -5 до -7°, могут рассматриваться как замороженные (т. е. не содержащие, жидкой фазы для поддержания роста микроорганизмов).

Замораживание вначале вызывает быстрое снижение количества жизнеспособных микроорганизмов. В зависимости от температуры, природы среды, типа микроорганизмов и других факторов число выживших микроорганизмов может затем подвергнуться дальнейшему медленному снижению или (в отношении к психрофильным микроорганизмам) начальное снижение может сопровождаться периодом задержанного размножения, а затем и роста выживших микроорганизмов. Предельные значения pH способствуют увеличению чувствительности микроорганизмов к холоду, между тем, как присутствие сахаров, глицерина и коллоидов оказывает защитное действие. Эти данные не относятся к бактериальным спорам, которые практически выдерживают обработку холодом или хранение в замороженном состоянии.

В отношении причины отмирания бактерий после обработки холодом мнения исследователей расходятся: одни объясняют его непосредственным воздействием холода, вызывающим гибель бактерий, - другие - механическим повреждением внеклеточными и внутриклеточными кристаллами льда, третьи - изменением содержащихся в клетках белков. Для подробного ознакомления целесообразно обратиться к работам, дающим подробное содержание различных теорий относительно отмирания бактерий под действием низких температур. Большинство исследователей указывают на то, что количество отмирающих бактерий не повышается при снижении температуры; Хейнс нашел, что отмирание бактерий было более быстрым при -1 до -5°, чем при -20°; другие исследователи наблюдали то же явление: бактерии и дрожжи подвергались большему разрушению при -10°, чем при -20°. При изучении процесса выживания микроорганизмов на замороженном мясе было найдено, что количество бактерий типа coli мало снизилось во время хранения при -18°, но уменьшилось в 10 раз после хранения при -4°.

В общем микроорганизмы чрезвычайно стойки к действию низких температур, даже патогенные виды выживают в течение длительных периодов. Многие виды бактерий и некоторые виды плесеней и дрожжей выживали в замороженной землянике в течение 3 лет. При изучении патогенных бактерий в быстро замороженной землянике (-18°) установлено, что Eberthella lyphosa выживает 6 месяцев, Staphylococcus aureus - 5 месяцев и бактерии типа Salmonella - 1 месяц.

Обстоятельный обзор исследований, касающихся действия замораживания на микроорганизмы, опубликован в 1955 г.

Газовое хранение

Значительное снижение количества микроорганизмов-возбудителей порчи достигается путем изменения состава воздуха в помещении, где хранятся пищевые продукты. Торможение роста облигатных аэробов, например плесеней, может быть достигнуто при хранении в полностью анаэробных условиях, однако некоторые плесени способны выдерживать очень низкое содержание кислорода; установлено, что потребность в кислороде у плесени сильно колеблется.

Промышленные способы, например вакуум-упаковка и упаковка, при которой воздух замещается инертным газом, предотвращают прогоркание и другие окислительные реакции, но не обеспечивают полного торможения роста плесеней.

При холодильном хранении сырых (свежих) пищевых продуктов (мясо, яйца, плоды, овощи) введение углекислоты, озона, сернистого ангидрида или треххлористого азота в атмосферу хранилища тормозит рост микроорганизмов, увеличивая тем самым сохранность пищевых продуктов.

Прорастание спор плесеней задерживается при содержании в воздухе 4% углекислоты; при 20%-ном содержании углекислоты скорость роста микроорганизмов составляет 1/2-1/5 по сравнению с хранением в воздушной среде, причем торможение роста тем резче, чем ниже температура. Для полного торможения роста плесеней и бактерий на мясе оптимальным является 40%-ное содержание углекислоты, но эта концентрация оказывает отрицательное действие на качество мяса (потеря цвета).

При 20%-ной концентрации и умеренных сроках хранения цвет мяса изменяется совершенно незначительно, а рост микроорганизмов-возбудителей порчи все еще задерживается в значительной степени. На практике применяется 10%-ная концентрация углекислоты; в таких условиях охлажденное мясо не подвергается микробиальной порче в течение 60-70 дней. Применение углекислого газа в низких концентрациях дает возможность удлинить сроки хранения охлажденной свинины, баранины. Опытами по хранению яиц в присутствии углекислого газа установлена необходимость балансирования благоприятных и неблагоприятных условий, обзор которых приводится в вышеуказанной работе.

Дыхание и созревание плодов могут быть задержаны хранением в атмосфере с низким содержанием кислорода и высоким содержанием углекислого газа. Ввиду того, что перезревшие плоды подвержены микробиальной порче, использование углекислого газа в сочетании с холодильным хранением практиковалось для предотвращения порчи семечковых плодов - яблок и груш. Требуемая для этого концентрация колеблется в зависимости от вида и даже сорта (помологического) плодов; как правило, для предотвращения загнивания плодов требуются довольно высокие концентрации углекислого газа.

Преимущества и недостатки озонирования атмосферы освещены в обзоре, опубликованном в 1938 г. Основным и вполне очевидным возражением против применения такого сильного окисляющего агента, как озон, является прогоркание продуктов (мяса, бекона, колбасных изделий, сливок, сливочного масла, яичного порошка и др.) даже при концентрациях озона в пределах 50-100 частей на 1 млн. частей воздуха (0.005%-0.01%). При температурах замораживания достаточно концентрации 0,0003 % для торможения роста плесеней и бактерий, но длительная экспозиция действию озона даже при такой низкой концентрации вызывает прогоркание сливочного масла и других пищевых продуктов. Равновесная концентрация в 0,0003% озона оказывает почти одинаковое гермицидное действие независимо от того, применяется ли она непрерывно в течение двух двухчасовых периодов или одного трехчасового периода в день.

Применяя такие кратковременные экспозиции, можно с успехом хранить многие виды пищевых продуктов. Для хранения говяжьего мяса при температурах охлаждения рекомендуется экспозиция действию 0,00025-0,0003% озона в течение двухчасовых периодов дважды в день; в таких условиях срок хранения может быть увеличен от двух до восьми недель. Некоторые исследователи сообщали, что микроорганизмы могут акклиматизироваться в атмосфере озона. Однако автор вышеуказанного обзора утверждает, что несмотря на многочисленные исследования, он не наблюдал такого явления у плесеней на говяжьем мясе.

Озонирование оказалось наиболее эффективным при хранении яиц, когда усушка за счет испарения влаги вызывает значительные затруднения, если только не обеспечена надлежащая относительная влажность воздуха. Если относительную влажность воздуха повышают для предотвращения указанной усушки, яйца начинают быстро плесневеть, и для борьбы с этим видом порчи озон является весьма эффективным. При условии нормальной чистоты яиц для предотвращения заплесневения требуется присутствие минимальной концентрации (0,00006%) озона в воздухе помещения, в котором хранятся ящики с яйцами, и при этом обеспечивается возможность хранения яиц в течение восьми месяцев при -0,6° и 90% относительной влажности; по истечении этого срока яйца по свежести нисколько не отличаются от хранившихся в течение нескольких дней. Согласно данным Саммера, бактерицидная активность озона значительно увеличивается при повышении относительной влажности воздуха, но практически сводится к нулю, если эта влажность ниже 50%.

Озон весьма эффективен в отношении увеличения сроков хранения сырых плодов (земляники, малины, винограда и др.), но он не предотвращает загнивания цитрусовых плодов.

В 1950 г. была опубликована работа, показавшая, что порча винограда, вызванная плесенью Botrytis, была снижена чередующимся применением сернистого ангидрида (2%-ной концентрации) и замораживания. Для борьбы с плесневением цитрусовых плодов и других продуктов был использован также треххлористый азот. Недостатком того и другого газа является их высокое корродирующее действие, кроме того, треххлористый азот нестоек и его приходится регенерировать по мере надобности.

В связи с газовым хранением следует указать, что срок хранения любого продукта обусловливается в основном его начальным микробиальным загрязнением. Для получения максимального эффекта при газовом хранении необходимо принимать всяческие меры предосторожности против загрязнения продукта перед закладкой его на хранение. Для уничтожения большого количества микроорганизмов с активным ростом требуется значительно более высокая концентрация озона, чем для малых количеств.

Снижение содержания влаги в продукте

Под этим заголовком можно рассматривать и обезвоживание (сушку) и добавление сахара, так как обе эти операции снижают влагосодержание до величины, при которой рост микроорганизмов предотвращается.

За исключением осмофильных дрожжей, изучение которых представляет особую задачу, плесени менее требовательны в отношении влаги, чем прочие микроорганизмы. Поэтому, для удовлетворительного сохранения пищевых продуктов содержание в них влаги должно быть ниже минимума, допускающего рост плесеней.

Истинным показателем чувствительности продукта к воздействию плесеней является не общее содержание влаги, а доступность ее. Например, в джеме влага недостаточно доступна для роста плесеней, между тем как в зерновых продуктах влага может быть лучше использована ими, несмотря на более низкое ее содержание. Доступность воды наиболее удобно выражать в показателях равновесной влажности.

Минимальная относительная влажность, необходимая для развития плесеней обычных видов, колеблется в зависимости от вида плесени в пределах 75-95%, причем наиболее устойчивыми к низкой относительной влажности воздуха являются виды Aspergillus и Penicillium. Критическая относительная влажность для роста плесеней на муке составляет 75%. Опытами установлено, что критическая относительная влажность повышается со снижением температуры; рост плесеней задерживается: при 20°, если относительная влажность равна 79% (влагосодержание 16%); при 15°, если относительная влажность равна 82,5% (влагосодержание 16,5%); при 5°, если относительная влажность равна 85% (влагосодержание 17,4%). Наиболее низкая относительная влажность, при которой наблюдался рост плесеней, составляла 85%. Опытами, проведенными в 1943 г., установлено, что минимальная относительная влажность для роста плесеней на обезвоженном мясе несколько ниже 75%. Автор данной книги наблюдал присутствие плесеней на джеме при относительной влажности 74%, но при более низкой относительной влажности роста не было. Исследование подверженности к плесневению многих продуктов показало, что при относительной влажности 75% на сыре после одногодичного хранения происходит лишь незначительный рост плесеней. На основании этого был сделан вывод, что при определении предельной относительной влажности, допускающей рост плесеней, играют важную роль водопоглощающие свойства продукта. Грибы для развития мицелия способны получать влагу непосредственно из атмосферы только при 100%-ной относительной влажности воздуха.

Присутствие ядовитых веществ, pH среды, пищевая ценность продукта для плесеней влияют на величину предельно допустимой влажности, но при этом можно утверждать, что пищевые продукты, для которых относительная влажность ниже 74%, как правило, устойчивы против плесени. Следовательно, горошек, зерновые и тому подобные сухие продукты должны быть обезвожены до влагосодержания, при котором равновесная влажность будет ниже, указанного предела. Точно так же, в продуктах, консервированных сахаром, растворенные вещества (сахар) должны находиться в концентрации, достаточной для снижения относительной влажности до той величины, которая необходима для торможения развития плесени.

Колебания температуры во время хранения могут способствовать плесневению продуктов в герметически укупоренной таре, так как внезапное охлаждение может вызвать временно локализованную конденсацию влаги или избыточную влажность сверх равновесной для данного продукта.

При равных концентрациях осмотическое давление сахаров в растворе тем выше, чем ниже молекулярный вес сахаров. Поскольку упругость паров растворов уменьшается при повышении осмотического давления, моносахариды (глюкоза, фруктоза) оказывают большее влияние на снижение влажности воздуха, чем сахароза. Так варенье, содержащее 65% сахара в виде сахарозы, более подвержено плесневению, чем аналогичный продукт, содержащий также 65% сахара, но в котором часть последнего составляет инвертный сахар. При исследовании консервирующего действия различных сахаров было установлено, что в отношении бактерий эффективность воздействия сахаров располагается в следующем порядке: фруктоза > глюкоза > сахароза > лактоза. Термофильные бактерии более чувствительны к действию сахаров, чем стрептококки. В отношении развития дрожжей фруктоза и глюкоза были одинаково эффективными при концентрациях на 5-15% ниже сахарозы. Порядок эффективности сахаров в отношении плоскокислых термофилов составляет: глюкоза > фруктоза > сахароза. В отношении дрожжей и плесеней тормозящее действие глюкозы сильнее, чем сахарозы, взятой в равной концентрации. Смесь из равных количеств разных сахаров обладала тормозящими свойствами, промежуточными по сравнению с отдельными видами сахара.

Осмофильные дрожжи способны выдерживать высокие концентрации сахара и вызывать порчу меда, шоколадных начинок, джема, мелассы и других продуктов, в которых содержание сахара достигает 80%. Наиболее активными возбудителями порчи являются дрожжи, относящиеся к роду Saccharomyces согласно классификации дрожжей, предложенной в 1952 г. Кондитерские продукты с относительной упругостью паров на своей поверхности менее 69% устойчивы против порчи осмофильными дрожжами. Разработан простой способ определения относительной упругости паров на поверхности кондитерских изделий по степени расплывания различных кристаллов под действием той или иной равновесной влажности. У продуктов с низким содержанием белков критическая влажность, при которой происходит забраживание, значительно ниже, чем у продуктов, богатых белками. При этом установлено, что для продуктов с влажностью выше критической точки добавление 10% инвертного сахара во многих случаях вызывает значительное снижение относительной упругости паров на поверхности этих изделий. Американскими исследователями составлена таблица равновесной упругости паров для различных сахарных растворов и дана эмпирическая формула, при помощи которой можно вычислить равновесную упругость паров джемов, шоколадного крема, сливочной карамели и др. Роль осмофильных дрожжей в порче пищевых продуктов хорошо освещена в работах 1942 и 1951 гг.

Сохранение большинства видов консервов в герметической таре путем контроля влагосодержания вряд ли возможно. Подобный контроль, однако, применяется в отношении некоторых продуктов, консервированных в жестяной и стеклянной таре, например к зерновым продуктам (овсяная мука, манная крупа) и к изготовленным на сахаре (джем, цукаты, конфеты и сгущенное молоко с сахаром). Как правило, сладкое сгущенное молоко нестерильно, но присутствующие в нем микроорганизмы не способны к росту. Некоторые виды джема и мармелада с относительно низким содержанием сахара (около 60%) для предотвращения порчи следует подвергать тепловой обработке.

Применение соли

Механизм действия соли в качестве консерванта для пищевых продуктов изучен еще недостаточно, но, по-видимому, дело заключается не только в осмотическом эффекте. По данным Шпейгельберга, осмотическое давление, при котором прекращается рост бактерий, значительно ниже для соли, чем для сахаров. Концентрация соли, необходимая для задержания роста микроорганизмов в пищевом продукте, зависит от ряда факторов, включая величину pH, температуру, содержание белков и присутствие тормозящих веществ, например кислот. Содержание воды имеет основное значение, и наиболее важна концентрация воды в водной фазе, а не содержание ее во всем продукте. Тормозящее действие соли на рост бактерий повышается при понижении температуры с 21 до 10°. В другой работе приводятся данные, показывающие, что количество соли, требующееся для торможения роста плесеней, снижается при снижении температуры, причем при 0° достаточно 8% соли, между тем как при комнатной температуре необходимо содержание соли 12%. Неоднократно доказывалось влияние состава среды на стойкость микроорганизмов к действию соли: в 1939 г. опубликовано сообщение о том, что микроорганизмы обнаружили более высокую стойкость к действию соли в огуречном рассоле, чем в бульонах с одинаковым содержанием соли; позднее было установлено, что рост галофильных бактерий может стимулироваться или тормозиться путем варьирования содержания белков в среде. Влияние величины pH на стойкость к действию соли изучали Джослин и Крюсс в 1929 г.; они установили, что понижение значений pH вызывало резкое снижение стойкости по отношению к соли у различных видов дрожжей и плесеней.

Немецкий исследователь Шуп предложил разделение бактерий на три группы по отношению к действию на них соли:

1) не галофильные - не дающие роста при высокой концентрации соли;

2) облигатные галофилы - растущие только при высоких концентрациях соли;

3) факультативные галофилы - растущие при высокой и при низкой концентрации соли.

Однако в более поздней работе было высказано сомнение в существовании истинных облигатных галофилов. Изучавшиеся этими исследователями галофилы не развивались на средах с низким содержанием соли, если в качестве посевного материала использовались 30-дневные и более старые культуры. Другим исследователем было показано (в противоположность общепринятому мнению о том, что галофильные бактерии живут исключительно в соленой среде, например соли, полученной естественным испарением воды, морской воде, на рыбе), что фактически галофильные бактерии широко распространены в природе и могут быть выделены в среде с 25%-ным содержанием соли из материалов, не содержащих соли, включая стоячую воду, серные источники, навоз и почву, при условии наличия инкубационного периода 90 дней.

Широкое разнообразие типов галофилов, о котором сообщалось в литературе, показывает, что типичной галофильной флоры не существует, имеется много микроорганизмов с большим разнообразием морфологических и биохимических свойств. Рост того или другого вида может происходить при разных концентрациях соли, вплоть до насыщенного состояния. Патогенные микроорганизмы, как правило, более чувствительны к действию крепких растворов соли, чем сапрофитные виды, а палочковидные более чувствительны, чем кокки. Таннер и Эванс сообщали, что рост Clostridium botulinum прекращается при концентрации соли 6,5-12%, причем критическая концентрация зависела от среды. Опубликовано также сообщение о подавлении роста Clostridium welchii и Cl. sporogenes при 5,7-7,4% содержания соли, причем опять-таки критическая концентрация зависела от среды. Рост Clostridium Saccharobutyricum замедляется при содержании в среде 2,9-5,3% соли. Нунхеймер и Фэбиан установили, что хлористый натрий в 15-20%-ной концентрации предотвращает рост некоторых вызывающих пищевые отравления стафилококков, а концентрации в 20-25% оказывают на них летальное действие.

Ливингстон исходил из того, что сферическая форма представляет наименьшую поверхность для водного обмена и поэтому является желательной в концентрированных растворах; при этом следует отметить, что микрококки как группа обычно обнаруживают высокую солеустойчивость и многие их виды свободно развиваются в присутствии 25% соли.

Многие виды бактерий, дающие рост на крепких солевых растворах, являются хромогенными и вызывают порчу соленой рыбы и шкур, изменяя их окраску. Неслогообразующая анаэробная палочка, выделенная и описанная Баумгартнером, развивалась в среде, насыщенной солью. Этот микроорганизм является возбудителем порчи с образованием газа в нестерилизованных соленых рыбных продуктах - паштетах и рыбных соусах. Порча эта может быть полностью предотвращена понижением значения pH в таких продуктах до 5,5 и ниже.

Пленчатые дрожжи дают рост в растворах с 24%-ным содержанием соли. Дрожжи этого вида растут на поверхности рассолов овощных маринадов и, окисляя молочную кислоту, образующуюся в процессе брожения овощей, тем самым уменьшают устойчивость этих продуктов. Плесени могут проявлять такую же нежелательную активность. Согласно данным Таннера, рост плесеней может происходить в присутствии 20-30% соли.

В связи с посолом мяса было отмечено, что многие микроорганизмы могут выдерживать высокие концентрации соли в рассолах, содержащих крупные куски мяса; по-видимому, рост происходит на пограничных поверхностях рассола и животных тканей и протекает очень медленно в чистом рассоле. В настоящее время имеется еще очень мало данных о таком росте.

Применение кислот

Действие кислот в отношении предотвращения развития микроорганизмов может относиться за счет концентрации водородных ионов или за счет токсичности недиссоциированных молекул или анионов. В отношении минеральных кислот токсическое действие связано с концентрацией водородных ионов; токсичность же органических кислот не (пропорциональна степени их диссоциации и относится в основном за счет действия недиссоциированных молекул или анионов.

Дрожжи и плесени значительно менее чувствительны к действию высокой концентрации водородных ионов, чем бактерии. Оптимальные значения pH для большинства видов бактерий находятся в нейтральной зоне, и бактерии не способны развиваться при pH ниже 4,5. Наиболее кислотоустойчивыми бактериями являются группы Lactobacillus, и Clostridium butyricum, растущие при pH около 3,5; плесени и дрожжи, лучше всего развивающиеся при pH 5,0-6,0, могут переносить pH 2,0 и даже ниже.

Для консервирования пищевых продуктов наиболее широко применяются уксусная и молочная кислоты. Исследованиями установлено, что уксусная кислота является лучшим консервантом по сравнению с молочной кислотой для маринадов; известно также, что для бактерий, дрожжей и плесеней уксусная кислота более токсична, чем молочная. При подкислении среды уксусной кислотой рост бактерий тормозится при pH 4,9, Saccharomyces cerevisae - при pH 3,9, Aspergillus niger - при pH 4,1; соответствующая титруемая кислотность составляет 0,04, 0,59 и 0,27%. При этом следует отметить, что указанные значения кислотности относятся к торможению роста нескольких видов в среде, приготовленной в лаборатории; в промышленной практике требуются более высокие концентрации уксусной кислоты (1,5-2%) для предотвращения порчи таких продуктов, как соусы, маринады и пр.

Добавление 5% соли или 20.1% сахара не дает возможности значительно снизить количество кислоты, требующееся для предотвращения роста микроорганизмов. В нетоксической концентрации уксусная кислота стимулирует рост плесеней, являясь для них источником энергии. Установлен (на основании величины pH) следующий порядок кислот по их консервирующему и гермицидному действию на бактерии: уксусная > лимонная > молочная кислоты; по количеству кислоты: молочная > уксусная > лимонная; для дрожжей: уксусная > молочная > лимонная кислоты независимо от значения pH или концентрации кислоты. Отмечено также, что комбинация сахара с соответствующим количеством кислоты делает эту смесь гермицидной. В работе с плоскокислыми термофилами был установлен следующий порядок гермицидного действия кислот при pH 5,5: лимонная > уксусная > молочная.

Количество глюкозы, требующееся для оказания гермицидного действия на штаммы стафилококков, может быть снижено на 50% при применении ее в комбинации с кислотой, взятой в половинной концентрации против тормозящей. Количество соли может быть снижено только на 30%, а сахарозы - на 20% для сохранения гермицидного действия. Было исследовано гермицидное действие пищевых кислот против заболеваний, вызванных потреблением газированных напитков. В концентрации 0,02 N (приблизительная крепость раствора, применяемая в напитках) порядок активности кислот в отношении разрушения Escherichia coli при 30° был следующим: винная > гликолевая > фосфорная > молочная > уксусная > лимонная. Температурные коэффициенты скорости разрушения микроорганизмов колебались в зависимости от вида кислоты; порядок их эффективности при 30° был следующим: винная > фосфорная > молочная > лимонная кислота, а при 0,6° - фосфорная > молочная > винная > лимонная. Токсичность 0,02 N раствора молочной и лимонной кислот увеличивалась при добавлении 10% сахарозы или 2,5 объемов углекислого газа. При исследовании действия уксусной кислоты на вызывающие порчу продукта дрожжи, выделенные из сладких маринадов промышленного производства, было установлено, что добавление сахара или бензойнокислого натрия понижало количество уксусной кислоты, необходимое для консервирования. В этой работе приводится график, при помощи которого можно установить на основании содержания сахара и кислоты, является ли данный маринад устойчивым к росту дрожжей, вызывающих порчу.

При изучении фунгистатического действия жирных кислот было установлено, что в пределах значений pH 2-8 многие из этих кислот были эффективными в отношении предотвращения роста плесеней. Уксусная кислота была весьма эффективной при pH ниже 5,0, причем ее количество, необходимое для торможения роста, было тем ниже, чем меньше было значение pH; при pH 2,0 было достаточно менее 0,04 моля уксусной кислоты, между тем как при pH 5,0 требовалась концентрация от 0,08 до 0,12 моля. При том же значении pH пропионовая кислота была эффективной в более низких концентрациях, чем уксусная кислота, и сохраняла свою активность до pH 6,0-7,0.

Пропионовая кислота и ее соли широко рекомендовались для предохранения пищевых продуктов от порчи, но ее применение не разрешено пищевым законодательством Великобритании. Было установлено, что пропионовокислый кальций предохраняет хлеб от появления так называемой тягучести (клейкости). Установлено также, что пропионовая кислота препятствует поверхностному росту плесеней на сливочном масле. Кислота действует активнее ее натриевой соли. Важно также влияние pH среды. Установлено, что пропионовокислый кальций эффективно предохраняет от роста плесеней фруктовое желе, глазированное желе и подобные им продукты.

В 1945 г. впервые было отмечено фунгистатическое действие сорбиновой кислоты; последующими многочисленными исследованиями была подтверждена эффективность этой кислоты в подавлении роста грибов. Исследованиями действия сорбиновой кислоты в качестве замедлителя роста пленчатых дрожжей при ферментации огурцов было установлено, что 0,1%-ная концентрация этой кислоты полностью тормозила рост плесеней и дрожжей, не оказывая заметного действия на нормальный процесс молочнокислого брожения. Позднее было выявлено, что 0,05% сорбиновой кислоты было достаточно для торможения роста плесеней на сыре. Сорбиновая кислота активна также при опрыскивании ею оберток для сыра. В настоящее время сорбиновая кислота пока еще не является консервантом, дозволенным законом, но последние исследования показали, что она менее токсична, чем бензойнокислый натрий.

Химические консерванты

В санитарном законодательстве термин «консервант» определяется как любое вещество, способное препятствовать, замедлять или прекращать процессы брожения, закисания или другие виды порчи и загнивания пищевых продуктов. Из этой рубрики исключаются такие вещества, как соль, селитра, сахар, молочная и уксусная кислоты, глицерин, спирт, пряности, эфирные масла и душистые травы. Многие химические вещества обладают консервирующим действием в силу того, что, соединяясь с протоплазмой микроорганизма, они оказывают токсическое действие на клетку. Это действие не ограничивается протоплазмой микробов, но относится к протоплазме вообще, причем вещества, токсичные для микроорганизмов, обычно вредны и для тканей тела.

По этой причине добавление в пищевые продукты консервантов, за немногими исключениями, воспрещается законодательством Великобритании. Дозволенными консервантами в этой стране являются: сернистый ангидрид (включая сульфиты), бензойная кислота (включая ее соли) и дифенил (в применении к оберткам для импортированных цитрусовых плодов). Сернистый ангидрид и бензойная кислота разрешаются к применению лишь в строго контролируемых количествах в продуктах некоторых видов. Применение нитритов в ограниченных количествах допускается для бекона, ветчины и вареной солонины.

Действие консервантов в значительной степени обусловливается рядом факторов, подробное рассмотрение которых выходит за пределы данной книги. Ниже приводится краткая характеристика, выявляющая их практическое значение. Активность консерванта главным образом зависит от его концентрации. При достаточной концентрации действие консерванта может быть летальным для микроорганизмов. При более низкой концентрации происходит торможение роста, но не отмирание микроорганизмов, а в очень малых концентрациях токсическое действие полностью отсутствует и развитие микроорганизмов может даже стимулироваться. Степень разведения, необходимая для осуществления указанных воздействий, колеблется в зависимости от вида консерванта; при одинаковой степени разведения двух разных консервантов токсичность их может быть совершенно различной. Для определения влияния степени разведения на активность консерванта применяется цифровое выражение - коэффициент концентрации.

Температура оказывается весьма важным фактором активности консервантов. В общем токсичность консерванта резко увеличивается при повышении температуры. Степень возрастания токсичности при данном повышении температуры характеризуется температурным коэффициентом. Температура действует не только на активность консерванта, но и на микроорганизмы. Если концентрация консерванта достаточна лишь для торможения роста микроорганизма, то стимулирующее действие незначительного повышения температуры может превысить эффект, полученный при усилении активности консерванта. Однако при температурах, превышающих максимум для роста микроорганизмов, очень небольшие количества консерванта могут оказать заметное летальное действие.

Следует также рассмотреть такие факторы, как вид микроорганизма и количество их в данном продукте. Так же как и по отношению к другим вредным воздействиям, споры микроорганизмов более устойчивы против токсического действия химических консервантов, чем вегетативные клетки. Нельзя полагать, что данный консервант может быть одинаково эффективным в отношении всех видов микроорганизмов; даже различные штаммы одного и того же вида обнаруживают разную устойчивость против действия одного и того же консерванта. Количество присутствующих клеток может оказать влияние на активность консерванта; концентрация, достаточная для борьбы с незначительной инфекцией, может оказаться недостаточной при наличии большого количества микроорганизмов. В этой связи совершенно ясна необходимость ограждения консервированных продуктов даже от минимального обсеменения.

Помимо указанных факторов, весьма важное значение имеет природа пищевого продукта, к которому добавляется консервант. Концентрация водородных ионов оказывает резко выраженное действие на токсичность большинства консервантов, которая значительно повышается в кислой среде. Опубликованы данные, показавшие, что активность бензойной, салициловой и сернистой кислот увеличивается почти в 100 раз в крепкой кислоте по сравнению с нейтральным ее раствором. Джиллеспи, работавший со спорами В. fulva, установил, что при pH 3,0 было достаточно около 0,001 % сернистого ангидрида для предотвращения прорастания и для подавления жизнеспособности спор, между тем как при pH 5,0 для достижения того же эффекта потребовалось 0,024% сернистого ангидрида.

На степень диссоциации слабых кислот, например сернистой и бензойной, действует величина pH раствора; чем ниже значение pH, тем выше концентрация недиссоциированной фракции. Активность консерванта в большой степени зависит от этой концентрации. В 1953 г. Шельгорном был введен термин абсолютная активность для определения активности недиссоциированной фракции. Сравнение абсолютной активности различных консервантов показывает, что активность недиссоциированной сернистой кислоты в 100-500 раз превышает активность недиссоциированной бензойной кислоты по отношению к микроорганизмам, изучавшимся этим исследователем.

В присутствии органических веществ действие большинства консервантов задерживается. В некоторых случаях консервант может реагировать с органическими веществами, образуя соединения, инертные или менее токсичные, чем свободный консервант. Крюсс установил, что сернистый ангидрид вступает в соединение с сахарами и другими компонентами фруктового сока и что связанная его форма отличается очень низким консервирующим действием, причем при концентрации 0,6% она менее токсична, чем при концентрации 0,005% свободного сернистого ангидрида. Эти данные были позднее подтверждены Ингрэмом, который пришел к выводу, что консервирующее действие сернистого ангидрида осуществляется только его свободной формой (т. е. титруемой йодом).

Исчерпывающие сведения относительно консервирования пищевых продуктов химическими консервантами приводятся в двух работах английских исследователей.

Посол мяса

Посол мяса, помимо придания ему желательного цвета и вкуса, оказывает довольно значительное консервирующее действие. Реакции, вызывающие образование характерной красной окраски у вареной солонины, заключаются в связывании пигмента мышечной ткани миогемоглобина с окисью азота с образованием соединения азооксимиоглобина (миоглобина с окисью азота), который при нагревании переходит в стойкий красный пигмент азооксимиохромогеи. Источником окиси азота является нитрит, присутствующий в засолочном растворе или рассоле. Дальнейшие подробности процесса даны в работе Йенсена.

Как правило, рассол содержит 20-28% соли и нитрата, натрия (азотнокислый натрий) около 1/10 от веса соли. Практикуется введение рассола в мясо путем накачивания его для ускорения процесса диффузии соли в мясо. После накачивания рассола мясо погружают в рассол, в котором развиваются стойкие против действия соли бактерии, переводящие нитрат в нитрит. В засолочном рассоле присутствуют микроорганизмы разнообразных видов; с целью подавления микроорганизмов-возбудителей порчи процесс засола проводится при низкой температуре, примерно при 5°.

Было выдвинуто предложение в непосредственном добавлении в рассол нитрита без первоначального добавления нитрата. Однако последующими исследованиями установлено, что такой способ может привести к недостаточному консервированию, в особенности по отношению к консервам из солонины. В 1941 г. опубликован обзор более ранних работ по данному вопросу, которыми установлено, что присутствующий в мясе нитрат задерживает развитие гнилостных бактерий, причем 0,5% нитрата предотвращает прорастание опор Clostridium sporogenes, за исключением случаев сильного обсеменения. Опыты показали, что нитрат в концентрации, обычной для засоленного мяса, может вызвать снижение термостойкости гнилостных бактерий-возбудителей порчи. Подчеркивая значение присутствия нитрата в засоленном мясе, они указывают на значительное разрушение нитрита при нагревании мяса в результате реакции с белками. Были проведены исследования по изучению действия засолочных солей на рост и термостойкость Clostridium botulinum, в результате которых установлено, что в мясном агаре прорастание спор снижалось более чем на 70% в присутствии 0,1% нитрата натрия, 0,005% нитрита натрия или 2% соли. На основании этих данных был сделан вывод, что концентрации, применяемые в промышленной практике, могут вызвать полное торможение роста бактерий. Теми же исследованиями было доказано наличие очевидного снижения термостойкости Cl. botulinum при нагревании солонины; однако этот эффект относили за счет тормозящего действия засолочных солей. Когда подвергшаяся нагреванию солонина обрабатывалась жидкой культуральной средой таким образом, что получалось высокое разведение тормозящих солей, термостойкость указанных микроорганизмов не изменялась. Однако в фосфатном буфере с pH 7,0 соль, нитрат натрия и их смесь, по-видимому, вызывали снижение термостойкости при температуре ниже 110°. В пределах 110-112,7° заметного действия не обнаружено.

Ряд исследователей изучал действие консервантов в мясе на термостойкость гнилостного анаэроба и установили, что консерванты, применяющиеся при засоле мяса, не влияют на режим тепловой обработки, необходимый для стерилизации мяса. В более поздней работе изучалось действие консервантов, применяющихся при засоле мяса, на рост того же микроорганизма в мясе, подвергавшемся тепловой обработке; было установлено, что основным тормозящим фактором была соль (в концентрации З,5 кг на 100 кг мяса). Нитрат натрия (78 г на 45 кг мяса) и нитрит натрия (7,1 г на 45,4 кг мяса) не предотвращали порчи мяса, хотя нитрит натрия значительно замедлял прорастание спор. Соль и нитрат натрия, соль и нитрит натрия, а также комбинация этих трех консервантов оказались лишь немного более активными по сравнению с одной только солью. Отмечается, что некоторая противоречивость выводов относительно тормозящего действия консервантов, применяемых при засоле мяса, может относиться за счет колебаний в составе сред, в которых эти консерванты испытывались.

В этой связи следует отметить, что величина pH среды, по-видимому, недостаточно учитывалась в некоторых исследованиях. Было установлено, что в концентрации 0,02% нитрит натрия оказывал резко выраженное тормозящее действие и в некоторых случаях полностью тормозил рост микроорганизмов, вызывающих порчу рыбы в кислой среде (pH 6,0); при pH 7,0 это действие было совершенно незначительным. Йенсен, опубликовавший в 1954 г. обширный обзор литературы относительно действия применяемых при засоле консервантов на бактерии, указал, что засоленное мясо имеет кислую реакцию и что тормозящее действие нитрата, наблюдавшееся многими промышленниками, вырабатывающими мясные консервы в течение ряда лет, было обнаружено в кислых средах.

Копчение

Процесс копчения мяса и рыбы проводится после засола путем выдерживания их в дыме, получающемся в результате медленного сгорания деревянных опилок. В общем для этой цели предпочитаются твердые древесные породы - дуб, ясень и вяз; мягкие смолистые древесные породы для копчения непригодны, так как содержат летучие вещества, вызывающие появление неприятного привкуса в копченом мясе или рыбе. Процесс копчения осуществляется путем подвешивания продукта непосредственно над тлеющей древесиной или же путем получения дыма в камере и вдувания его воздуходувками по трубопроводам в помещение, в котором находятся подлежащие копчению продукты. Для получения высококачественных продуктов требуется тщательный контроль процесса.

Помимо сообщения продукту желательного вкуса, копчение оказывает резко выраженное консервирующее действие, частично относящееся за счет поглощения продуктом бактерицидных веществ, содержащихся в дыме. Исследованиями, проведенными в 1954 г., установлено, что консервирующее действие копчения, создается альдегидами, фенолами и алифатическими кислотами. В процессе копчения поверхностный слой продукта пропитывается указанными бактерицидными компонентами дыма, в результате чего отмирает большая часть неспорообразующих бактерий. Последующее микробиальное загрязнение продукта до некоторой степени снижается в результате остаточного консервирующего действия поглощенных бактерицидных веществ; присутствие соли и удаление воды, содержащейся в продукте, происходящее в процессе копчения, также повышают сохраняемость копченых продуктов. Микостатическое действие компонентов дыма от сгорания древесины не слишком сильно выражено, и копченые продукты более подвержены плесневению, чем бактериальной порче. В одном из опубликованных в 1949 г. исследований по копчению рыбы установлено, что значение pH поверхностных слоев в процессе копчения понизилось с 6,7 до примерно 5,9. Считают, что причиной этого снижения было поглощение кислых компонентов дыма, повысивших чувствительность присутствующих на рыбе микроорганизмов к действию бактерицидных агентов дыма.

Группа американских исследователей в 1954 г. изучала бактерицидное действие копчения на бекон. В результате было установлено, что температура коптильной камеры повышает бактерицидное действие дыма; колебания относительной влажности оказывают незначительное действие. Комбинированное действие густого дыма и высокой температуры (60°) снижало количество присутствующих в продукте бактерий в 100 000 раз.

В обзоре работ, опубликованном в 1954 г., приводится полная сводка исследований по изучению химического и бактериологического действия процесса копчения. Детальные сведения относительно методов копчения приводятся в работе, опубликованной Джонсом в 1942 г.

Презервирование со специями (пряностями)

Консервирующее действие некоторых специй и пряных растений установлено давно, причем имеются указания, что активность эфирных масел некоторых специй зачастую выше, чем у некоторых химических консервантов.

Во всех случаях задерживающее или токсическое действие специй и пряных растений приписывается эфирным маслам. Большинство исследователей приходят к выводу, что гвоздика, корица и горчица обладают более высоким консервирующим действием, чем прочие специи и пряности. В обзоре, опубликованном в 1933 г., приводятся данные по действию различных специй, пряных растений и их эфирных масел на дрожжи (Saccharomyces cerevisiae). Порошок черной горчицы обладает самым сильным консервирующим действием; на втором месте стоят гвоздика и корица. Кардамон, кумин, кориандр, тмин, сельдерейные семена, красный перец, мускатный орех, имбирь, майоран и прочие специи и пряности оказывают весьма незначительное консервирующее действие или совсем его не оказывают.

Было установлено, что летучее масло горчицы более сильный консервант, чем эфирные масла прочих специй и пряных растений. Летучее масло горчицы в концентрации 0,02 или 0,5% в порошке черной горчицы было более активным по сравнению с сернистым ангидридом и бензойной кислотой, взятых соответственно в концентрациях 0,035 и 0,06%. Американские исследователи, используя ряд бактерий в качестве тест-организмов, установили наличие значительных колебаний в устойчивости одного и того же вида микроорганизма к действию различных специй. Полученные ими данные показывают, что единственными специями, оказывающими на бактерии подавляющее действие даже в низких концентрациях, были молотые гвоздика и корица. Молотый ямайский перец и гвоздика оказывали тормозящее действие в концентрации 1%; горчица, мускатный орех и имбирь - в концентрации 5%. 50%-ная эмульсия эфирного масла горчицы в концентрации 0,1% оказывала слабое тормозящее действие, а в 1%-ной концентрации полностью задерживала рост бактерий.

В 1943 г. была проведена исследовательская работа по изучению активности ряда эфирных масел специй и их компонентов в отношении задержания роста поверхностной микрофлоры. В качестве тест-организмов применялись Saccharomyces ellipsoides, S. cerevisiae, Mycoderma vini и Acetobacter aceti. Полученными данными выявлено наличие колебаний в устойчивости этих микроорганизмов к действию специй. При этом было установлено, что эфирное масло горчицы обладало наиболее сильным термицидным действием; затем следовали корица, китайская корица (кассия) и гвоздика. На первом месте по токсичности компонентов специй был аллилизотиоцианат, карвакрол, затем следовали одинаковые по действию коричный альдегид и коричный амилацетат (циннамилацетат), метиловый эфир эвгенола и эвкалиптол. Гермицидное действие эфирных масел специй не имело связи с поверхностным натяжением. Считают, что токсичность эфирных масел специй развивается скорее за счет химических, а не физических факторов.

Более поздними исследованиями было установлено, что ввиду более высокой концентрации активного вещества эфирные масла специй являются более эффективными, чем цельные или молотые специи, в отношении предотвращения роста дрожжей в лабораторных средах. Эфирные масла корицы, горчицы, гвоздики, ямайского перца, лаврового листа, винтергриена (гаультерия) и мяты в концентрации 0,1 % в большинстве случаев полностью задерживали рост дрожжей. В концентрациях свыше 1% эфирные масла горчицы, корицы и гвоздики оказывали гермицидное действие на дрожжи в средах эфирное масло - глюкозный агар. При пробе с применением чашечно-пластинчатого посева эфирные масла ямайского перца, миндаля и лаврового листа также обнаружили гермицидное действие в отношении дрожжей. Эфирные масла аниса, лимона и лука были отнесены к категории бактериостатических веществ. В 1953 г.

Андерсон и др. провели работу по испытанию действия ряда эфирных масел на задержание роста микроорганизмов, вызывающих зависание пищевых продуктов (бактерии и дрожжи) в глюкозном бульоне. Наиболее активными оказались эфирные масла горчицы, чеснока, лука и корицы. В подкисленном бульоне задерживающее действие в отношении развития дрожжей большинства эфирных масел специй повышалось; исключение составил один штамм дрожжей, для задержания роста которого в подкисленном бульоне потребовалась более высокая концентрация эфирного масла, чем в бульоне с pH 7,2.

Приведенные выше и прочие исследования показывают, что консервирующее действие некоторых специй может иметь практическое значение, но применяемые для этой цели концентрации зачастую лимитируются вкусовыми свойствами продукта. В последних работах было уделено внимание изучению действия, эфирных масел специй на термостойкость пищевых микроорганизмов. Этот вопрос рассматривается также в главе VIII.

Квашение

Овощи, используемые в производстве маринадов, консервируют путем засола и квашения, помещая их в солевой раствор концентрацией 5-10% и подвергая самопроизвольному молочнокислому брожению. Соль снижает активность нежелательных микроорганизмов, но не препятствует росту молочнокислых бактерий и прочих видов микроорганизмов, которые переводят содержащиеся в овощах сахара в молочную кислоту.

В одном из отчетов по исследованию процесса брожения огурцов отмечается активность дрожжей в этом процессе. В более позднем исследовании было установлено, что в основном кислотность огуречного рассола в процессе брожения вызывается жизнедеятельностью Lactobacillus plantarum; прочие виды молочнокислых бактерий, например Leuoonostoe или газообразующие виды Lactobacillus, мало способствуют кислотообразованию.

Помимо молочной кислоты, образующейся в достаточном для консервирующего действия количестве, образуются в небольших количествах спирт, а также уксусная и пропионовая кислоты. Брожение протекает лучше всего при температуре около 25° и нормально заканчивается в несколько недель; при этом овощи должны иметь плотную консистенцию и быть прозрачными на вид. Конечная кислотность составляет около 1%. Процесс брожения может быть ускорен использованием слабых солевых растворов (около 5%), которые способствуют быстрому образованию высокой титруемой кислотности и получению низких значений pH при квашении огурцов. Повышение содержания соли замедляет кислотообразование; при этом общая кислотность снижается и получается рассол с более высоким значением pH.

Быстрое молочнокислое брожение желательно для снижения величины pH рассола до значения, при котором задерживается рост пектолитических микроорганизмов. Если допустить рост этих микроорганизмов в ранних стадиях процесса квашения, может произойти размягчение тканей плода. Для предотвращения такого размягчения в свежий солевой раствор с огурцами иногда добавляют некоторое количество активного рассола в качестве закваски.

Исследованиями, проведенными в 1950 г., установлено, что размягчение огурцов в рассоле в условиях промышленного производства вызывает фермент, схожий с полигалактуроназой; в этой же работе описан чувствительный метод выявления ферментов, расщепляющих пектин в огуречном рассоле.

В опубликованном недавно исследовании о размягчении засоленных огурцов было установлено, что преобладающие пектолитические микроорганизмы относились к категории Bacillus; они вызывали размягчение огурцов в тех случаях, когда нормальный процесс квашения задерживался, в результате чего величина pH рассола оставалась относительно высокой в течение нескольких суток.

По окончании процесса квашения овощей обычно практикуется повышение содержания соли по меньшей мере до 15% с целью содействия сохраняемости продукта. Для успешного хранения необходимо предотвратить рост пленчатых грибков; эти микроорганизмы окисляют кислоту, образующуюся в процессе брожения (квашения), и создают, таким образом, благоприятные условия для роста микроорганизмов, которые могут вызвать размягчение и обесцвечивание овощей.

Рост поверхностной микрофлоры у овощей, заквашиваемых в бочках, может быть предотвращен путем заполнения бочек до краев рассолом. В бродильных чанах, установленных под крышей, наблюдается быстрое пенообразование, между тем как в чанах, оставленных на открытом воздухе, пенообразования обычно не бывает вследствие того, что солнечные лучи задерживают развитие пленчатых микроорганизмов. Это обстоятельство естественно привело к необходимости облучать заквашенный продукт при помощи ртутных ламп для предупреждения пенообразования на поверхности бродильных чанов, установленных в помещениях, причем весьма эффективным оказалось ежедневное облучение в течение 30 мин. Прочими методами, рекомендуемыми для предотвращения пенообразования, являются: заливка поверхности рассола жидким парафином, использование подавителей поверхностного натяжения и заливка поверхности рассола эмульсиями эфирных масел специй, из которых наиболее активной оказалась эмульсия эфирного масла горчицы. Подробные сведения о квашении овощей в производстве маринадов приводятся в работе Крюсса.

Антибиотики

За последние годы в печати появилось много статей относительно консервирования пищевых продуктов антибиотиками. Эти работы относятся в основном к сохранению сырых пищевых продуктов или же к использованию антибиотиков в качестве дополнительного мероприятия в сочетании с пониженной тепловой обработкой консервов. Последний способ более подробно рассматривается в главе VIII.

В целях сохранения сырых пищевых продуктов были испытаны многие виды антибиотиков, причем некоторые из них обнаружили высокую бактериостатическую активность. В результате первой исследовательской работы в этой области, проведенной в 1946 г., была установлена непригодность пенициллина в качестве консерванта для молока. Была также проверена возможность использования антибиотиков для хранения мяса. Наиболее активной для предотвращения роста анаэробных микроорганизмов в мясе, хранившемся при 20°, оказалась смесь субтилина и стрептомицина; один стрептомицин был неэффективен.

Установлена непригодность субтилина для сохранения сырой рыбы. Довольно хорошие результаты были получены с применением хлоромицина в концентрациях 0,0025-0,005%, но наиболее активным оказался ауреомицин; даже в концентрации 0,001% он задерживал микробиальную порчу при 33-37° хранения. При температурах хранения рыбы и мяса от 0 до 21° наиболее активными антибиотиками в отношении предупреждения порчи были ауреомицин, террамицин и хлоромицетин (в порядке степени активности). Ауреомицин отличался резко выраженным свойством задерживать порчу измельченного мяса при применении в концентрациях от 0,00005 до 0,0002%, причем активность его была одинаковой и при погружении кусков мяса или рыбы в растворы, содержавшие 0,0005-0,001% антибиотика. Пенициллин, грамицин, субтилин и прочие антибиотики либо обладали более слабыми бактериостатическими свойствами, либо были вовсе неэффективными.

Тарр с сотрудниками установили, что использование льда, содержащего 0,0001% ауреомицина, значительно увеличивало сроки хранения рыбы. После хранения в обычном льде в течение 14 суток количество бактерий в рыбе составляло 190 млн. на грамм, а в рыбе, хранившейся во льду, обработанном ауреомицином, количество бактерий составляло лишь 20 млн. на грамм. В чистой морской воде, содержавшей 0,0002% ауреомицина, рыба сохранялась дольше, чем хранившаяся во льду обычным порядком.

На основании исследований сделано заключение о том, что пенициллин, бацитрацин и стрептомицин не предотвращают порчи сырого говяжьего фарша; хлоромицетин, ауреомицин и террамицин повышают срок хранения этого продукта в 2 раза при 10°. Опыты с использованием микроорганизмов, выделенных из мяса, показали, что названные выше три вида антибиотиков неодинаково активны в отношении различных микроорганизмов. Был также испытан способ введения ауреомицина в кровеносную систему мясной туши; этот способ позволял предотвратить глубинную порчу мяса при задержке передачи его на холодильное хранение.

Было исследовано также действие антибиотиков на микроорганизмы, вызывающие пищевые отравления и порчу пищевых продуктов, причем материалом служили начинки кремовых пирожных. Рост штамма Staphylococcus aureus, вызывающего пищевые отравления, и естественной термостойкой микрофлоры в указанных начинках был задержан на 2-3 суток при 37° субтилином в концентрации 0,01%. При сочетании террамицина в концентрации 0,0001% с субтилином в концентрации 0,011% консервирующее действие антибиотиков увеличивалось как в отношении патогенных (болезнетворных), так и непатогенных микроорганизмов. Ауреомицин и террамицин в малых концентрациях (0,00006-0,0001%) задерживали рост Staphylococcus aureus, но были неэффективными против микроорганизмов-возбудителей порчи пищевых продуктов. Более поздними опытами этих же исследователей установлена возможность задержания роста штаммов Salmonella в начинках для пирожных при действии субтилина с террамицином и температуре 37°.

Перечисленные выше и прочие исследования показывают, что некоторые антибиотики обладают ясно выраженной бактериостатической способностью. Однако возможность применения их в качестве консервантов на сегодняшний день сомнительна. Проведенные исследования имели экспериментальный характер; для промышленного применения антибиотиков в качестве консервантов необходимо дальнейшее их изучение. Помимо тщательного всестороннего выявления активности антибиотиков в качестве консервантов, необходимо также учесть возможность их вредного физиологического действия.

Ультрафиолетовое облучение

Летальное действие ультрафиолетовых лучей на микроорганизмы исследовалось в течение многих лет; создана обширная литература по этому вопросу. В некоторых случаях наблюдается недостаточная согласованность в результатах лабораторных опытов и промышленного применения этого облучения, что, по-видимому, объясняется применением разных источников излучения, разных методов определения летального действия и пр.

Проникающая способность ультрафиолетовых лучей очень низка; летальное действие ограничивается микроорганизмами, присутствующими на поверхности или вблизи поверхности облучаемого материала, причем дезинфицирование окружающего воздуха в сильной степени лимитируется присутствием в нем частиц пыли. В прошлых работах ограниченное действие ультрафиолетовых лучей в отношении подавления роста микроорганизмов не было учтено, и облучение применялось для достижения таких целей, для которых оно было совершенно непригодно. Однако за последние годы более разумное применение этого вида излучения показало, что при наличии некоторых условий оно является эффективным средством для предотвращения поверхностного микробиального загрязнения пищевых продуктов.

Обычно считают, что максимальное гермицидное действие достигается на длине волны в 2600 А. Ртутные лампы низкого давления имеют высокую эмиссионную мощность на длине волны 2537 А, весьма близкой к максимальной бактерицидной длине волны. Летальное действие колеблется в зависимости от продолжительности экспозиции и интенсивности световых лучей, а также от температуры, концентрации водородных ионов и количества микроорганизмов на единицу площади экспозиции.

Относительная влажность воздуха влияет на скорость отмирания бактерий, взвешенных в воздухе, причем это влияние резче выражено при относительной влажности выше 50%, когда дальнейшее повышение ее ослабляет летальное действие. Установлено, что споры бактерий, как правило, более устойчивы к ультрафиолетовому излучению, чем вегетативные формы; В. subtilis в 5-10 раз более стойка, чем Е. coli; плесени и дрожжи более устойчивы к действию ультрафиолетовых лучей, чем вегетативные формы бактерий. Однако эти данные не совсем совпадают с данными других исследователей, согласно которым стойкость Mucor в 6 раз, a Penicillium в 5-15 раз выше, чем у бактерий; дрожжи, однако, обладают той же стойкостью или несколько более высокой, чем бактерии. Плесени могут выработать защитные свойства против действия ультрафиолетовых лучей при помощи жировых или восковых секреций. По-видимому, некоторую защиту оказывают также пигменты: темноокрашенные споры более устойчивы к облучению, чем неокрашенные виды. В лабораторных и полевых опытах слабое, но длительное излучение, охватывающее один жизненный цикл микроорганизма, было более эффективным, чем интенсивное излучение в течение короткого периода. Это явление объясняется тем, что во время некоторых стадий жизненного цикла чувствительность микроорганизмов к ультрафиолетовому излучению повышается.

В отношении механизма действия ультрафиолетового излучения существует много противоречивых теорий. К ним относится теория о наличии косвенного летального действия в результате образования перекиси водорода и различных химических и физико-химических реакций в компонентах клетки. В настоящее время образование перекиси водорода не считается причиной бактерицидного действия ультрафиолетового излучения, хотя это действие может быть связано и с органическими перекисями. Было показано наличие весьма близкого сходства между бактерицидной кривой и кривой абсорбции некоторых веществ ядра клетки, отсюда был сделан вывод, что такие вещества участвуют в механизме летального действия ультрафиолетового излучения. Однако неизвестно, какие изменения происходят в веществе ядра. Этот вопрос рассматривается в статье, опубликованной в 1954 г.

Использование ультрафиолетовых лучей в пищевой промышленности идет в следующих направлениях: при тендеризации (смягчении) или созревании мяса, старении сыра и стерилизации обертки для последнего, предотвращении роста плесеней на поверхности хлебопекарных изделий, дезинфицировании воздуха в цехах обработки пищевых продуктов и розливе напитков в бутылки.

При хранении ткани мяса размягчаются в результате действия ферментов. Этот процесс протекает быстрее при относительно высоких температурах, которые, однако, благоприятствуют росту микрофлоры на поверхности мяса. Предотвращая этот рост ультрафиолетовым облучением, можно полностью использовать преимущества хранения при высоких температурах. В этой связи упоминается применение «Стериламп», дающих излучение в зоне 2537 А, так же как и в зоне 1850 А. Излучение на более длинных волнах обладает сильным гермицидным действием; на более коротких волнах атмосферный кислород переходит в озон; куски неправильной формы и затененные участки облучаемой поверхности стерилизуются озоном. В 1951 г. опубликован обширный обзор по электромагнитным излучениям и их применению в пищевой промышленности; обзор касается также и ультрафиолетового излучения.

Обеззараживающая фильтрация

Механическое удаление микроорганизмов при помощи ультрафильтрации, известное под названием холодной стерилизации, применяется в производстве фруктовых соков, пива и вина. Этот способ, разумеется, может применяться только для стерилизации прозрачных жидких продуктов. С этой целью широко применяется обеззараживающий фильтр (ЕК-фильтр) Зейтца. Продукт сначала подвергают осветлению и затем пропускают через специальный пресс, похожий по конструкции на обычный фильтрпресс; фильтрующий элемент состоит из листов или пластин специально обработанной смеси асбеста и целлюлозы. Согласно сообщению исследователей, диаметр некоторых отверстий фильтра составляет 17 u; по-видимому, фильтры, не только просеивают, но и задерживают микроорганизмы путем адсорбции. Необходимо подвергнуть фильтруемый продукт предварительному осветлению, так как в противном случае отверстия фильтрующего элемента будут быстро забиты.

Перед употреблением собранный фильтрпресс необходимо стерилизовать, для чего его продувают в течение 10-20 мин. паром под давлением. Выходящий из пресса стерильный продукт в асептических условиях помещают в тару, стерилизованную паром или раствором сернистого ангидрида. Фильтрующие элементы чистить нельзя, поэтому их после употребления выбрасывают. Подробные сведения о холодной стерилизации фруктовых соков и подобных продуктов приведены в вышеуказанной статье.

Одним из наиболее распространенных ответов, почему люди не едят здоровую пищу, является ее высокая стоимость. Запасаясь свежими продуктами, люди в результате выбрасывают значительную ее часть, а значит, выбрасывают деньги на ветер. К счастью, есть способы сохранить запасы свежими на долгое время. Попрощайтесь с завядшим салатом, заплесневелыми грибами и проросшим картофелем. И вы убедитесь, что вложение в здоровые продукты оправдано до копейки.

Проблема: Переспевшие бананы

Решение: Обернуть стебли бананов в полиэтиленовую пленку

Есть фрукты, которые, созревая, выделяют газ этилен – бананы одни из них. Если вы знаете, что не съедите их сразу, просто оберните стебли (где выделяется большая часть газа) плотно полиэтиленовой пленкой. Это замедлит процесс созревания и сохранит плоды свежими долгое время. Бананы, дыни, нектарины, груши, сливы и помидоры также испускают этилен и должны храниться вдали от других продуктов.

Проблема: Мягкий сельдерей

Решение: Обернуть в фольгу и хранить в холодильнике

Сельдерей – это тот продукт, который из крепкого и хрустящего может быстро стать мягким и вялым. Нужно уделить всего лишь несколько минут, чтобы продлить срок его службы. После мытья и сушки стеблей оберните его в алюминиевую фольгу. Это позволит сохранить влагу, но даст выход этилену, в отличие от пластиковых пакетов. Таким образом, можно сохранить сельдерей свежим несколько недель.

Проблема: Завядший салат

Решение: Закрыть дно контейнера холодильника бумажными полотенцами.

Все хотят видеть на летнем обеденном столе полезный хрустящий салат. Но через несколько дней он увядает. Для продления срока хранения зелени и других продуктов в вашем холодильнике, выложите ящик бумажными полотенцами. Влага – вот то, что делает фрукты и овощи вялыми. Бумага в овощном отсеке холодильника будет поглощать избыточную влагу, и продукты сохранятся свежими в течение длительного периода времени.

Проблема: Заплесневелые ягоды

Решение: Промойте ягоды в уксусе и поместите в холодильник

Летом полки магазинов пестрят яркими и сочными ягодами. Низкие сезонные цены на клубнику, чернику, малину заманчиво требуют взять упаковку побольше. Но, если их быстро не съесть, ягоды становятся мягкими и липкими. Чтобы избежать этого, промойте ягоды уксусным раствором (одна часть уксуса на три части воды), а затем чистой водой. После высыхания храните ягоды в холодильнике. Уксус убивает бактерии на ягодах и предотвращает рост плесени, что позволяет им дольше сохраниться.

Проблема: Проросший картофель

Решение: Хранить картофель с яблоком

Большой мешок картошки может стать спасительным для загруженных будней. Из нее можно быстро сделать печеный картофель, фри или оладьи. Недостаток в таком запасе то, что картофель начинает прорастать. Хранить его нужно в прохладном сухом месте, вдали от солнечных лучей и влаги. И еще одна хитрость: бросьте в мешок с картофелем яблоко. Научных объяснений этому феномену нет, но яблоко защищает картофель от прорастания. Попробуйте и судите сами.

Проблема: Скользкие грибы

Решение: Хранить грибы не в полиэтиленовом, а в бумажном пакете

Грибы – вкусный и питательный ингредиент для многих блюд, но нет ничего более неаппетитного, чем слизистый гриб. Чтобы грибы оставались мясистыми и свежими как можно дольше, нужно правильно их хранить. У нас есть привычка упаковывать все в полиэтиленовые пакеты, но для грибов нужна бумага. Пластик удерживает влагу и дает развиться плесени, бумага же дышит и пропускает влагу, а, следовательно, замедляет порчу грибов.



Поделитесь с друзьями или сохраните для себя:

Загрузка...